## Architects of the Genome Era Bridging Biology and Compute at Scale

Sneha Goenka Princeton University

## Past 2 decades witnessed significantly reducing cost of sequencing





#### **Genomics growth rate >>> CPU performance**





ATCTGAAATTGTGGCAATAATCAATAGCTTACCAACCAAAAAGAGTCCAGGACCAGATGGATTCACAGCCGAATTCTACCAGAGGTGCAAGGAGGAACTGGTACCATTCCTTCTGAAA CTATTCCAATCAATAGAAAAAGAGGGAATCCTCCCTAACTCATTTTATGAGGCCAGCATGATTCTGATACCAAAGCCTGGCAGAGACACCAAAAAAGAGAAATTTTAGACCAATAT CCTTGATGAACATTGGTGCAAAAATCCTCAATAAAATACTGGCAAAAAAATCCAGCAGCACATCAAAAAGCTTATCCACCATGATCAAGTGGGCTTCAT TCCTGGGATGCAAGGCTG GTTCA ATA TATACA AATCAA TAA ATGCAA TCCAGCATA TAA ACA GAGACA AAGACA AAA ACCACA TGA TTA TCTCAA TAGATGCAGAAA AGGCCTTTGACA AAA TTCAACAACCCTTC ATGCTAAAAACTCTCAATAAATTAGGTATTGGTGGGACGTATCTCAAAATAATAAGAGCTATTTATGACAAACCCACAGCCAATATCATACTGAATGGGCAAAAACTGGAAGTGTTCC CTTTGAAGACTGGCACAAGACAGGGATGCCCTCTCTCACCACTCCTATTCAACATAGTGTTGGAAGTTCTGGCCAGGGCAATTAGGCAGGAGAAGGAAATAAAGGGTATTCAATTAGG AAAGAGGAAGTCAAATT 'TGCAGATGACACGATTGTATATCTAGCAAACCCCCATTGTCTCAGCCCAAAATCTCCTTAAGCTGATAAGCACAACTTCAGCAAAAGTCTCAGGA TA CAA AAT CAA TGTACAAAA ATCACAAGCATT CCTATA CAC CAA CAA CAGACAAACAGAGAGCCAAAT CAT GAGTGAACT CCCATT CACAAT TTCAAAGAGAATAAAATACCTAG GAAT AGGAAG AAGGAGAAC TACAAACCACTGCTCAATGAAA 'AAAAGAGGAT AATCAA TGGAACCAAAAAAGAGCCCGCATCACCAAGTCAATCCTAAGCCAAAAGAACAAAGCTGGAGGCATCACACTACCTGACTTCAAACTATACTACAAGGCTACAGTAACCAAAACAAGCAT GGTACTGGTACCAAAACAGAGATATAGATCAATGGAACAGAACAGAGCCCTCAGAAATAATGCCGCCATATCTACAACTATCTGATCTTTGACAAACCTGGGAAAAACAAGCAATGGGG <u>ETTATA CAAAAA TCAATTCAA GATGGA TTAAAGAC</u> AAAGGATTCCCTATTTAATAAATGATGC TTAAACGTTAGACCTAAAACCATAAAAA GI TTGCAACCTACTCATC CCAAAATTGACAAATGGGATCTAATTAAACTAAA ACAGGCAACCTACAAAATGGGAGAAAAT CCATCAAAAAGTGGGCAAAGGACACAAACAGACACTTCTCAAAAGAAGAC TGACAAAGGGCTAATATCCAGAATCTACAATGAACT AGAAAAAAACAACAACC ATTTATGCAGCCAAAAAACACATGAAAAAATGCTCA CAGAGAAATGCAAA TCAAAACCACAATGAGATACCATCTCACACCAGTTAGAATGGCAATCATTAAAA ••• **...** (m) A AGTCAGGAAACAACAGGTGCTGGAGAGGATGTGGAG G 'GTGGAAGTCAGTGTGGCGATTCCTCAGGGA TCTAGAACTAGAAATACC ACAATAGCACAGACTTGGAACCAA CGCAA ATGTCCAACAATGATAAA CTGGATTAA GAA AATGTGGCA CATATA CACCATGGA ATA CTATGCA GCCATAAAAAATGATGAGTTCATGT A GTAAACTATCCCAACAACAAAAAACCAAACAAATGAGATCACA TGGACACAGGAAGGGGAACA TAGTGGGTGCAGTGCAC GCAACAACAACAAAAAAAAATTTAAAACATGAGCAAAGGTTTTAAAATACACATTTCTCTAAAGAAGATATGCCAAGTAAGCACAGGATAAGGTGCTCAGCATCACTAAT TGCTGGATGTGGAGAAGTCAGGACTCCTGCACACTGCTGGTGGGAAAGTAAGATGGCACAGCCACTGTGGAAAACAGTAATCACCATATGATCCAG' LTGGGTATA TA CCCCAAAAAACTGAAAGTGGGAATTTGTACACCCATGTTTATAGCAGCATTCACAAGAGCCAAAGGGTAGAAAAAGCCCAAATCTCCATCTACAGATGAATGGATAAGCAAATATGAT GCCATATGTAGAAAGCTGAAACTGGATCCCTTCCTTACACCTTATACAAAAATCAAGTCAAGATGGATTAAAGACTTAGACCTTAGACCTTAAAACCCTTAGAACCCTAGAAGAAAACCC TAGGCAATACCATTCAGGACATAGGCATGGGCAAGGACTTCATGTCTAAAACACCAAAAGCAATGGCAACAAAAGCCAAAATTGACAAATGGGAT BRANGEFON CACAGCAAAAGAAACTACCATCAGAGTGAACAGGCAACCTACAAAATGGGAGAAAATTTTTTGCAACCTACTCATCTGACAAAGGGCCTAATATCCAGAA NIVERSITY

### **Comparative genomics enables genome interpretation**

Article Published: 25 February 2021

A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity

Chimp Genome Helps Scientists Learn More About Human DNA

News Published: September 8, 2005



**Prediction of functional elements** 



#### **Thousand-genome era is already here**



4 million babies born in the US annually

12% babies admitted to the NICU

1/3 NICU hospitalizations have a genetic cause

#### 40%

longer hospitalizations when disorders are genetic

ICU hospitalizations cost \$15-20k/day



#### Faster genetic diagnosis has significant impact



**Genetic Diagnosis Turn-around Time** 



## **Enabling biologists to leverage sequencing**

#### **Comparative Genomics**



SegAlign: A Scalable GPU-based whole genome aligner [Supercomputing Conference]



#### **Clinical Genomics**

An ultra-rapid workflow for clinical whole genome sequencing [New England Journal of Medicine Nature Biotechnology]



Darwin-WGA: A fast and highly sensitive co-processor for whole genome alignments [HPCA]



#### **Fragmented Acceleration in Genomics**

#### SquiggleFilter: An Accelerator for Portable Virus Detection

Tim Dunn\* timdunn@umich.edu University of Michigan Ann Arbor, MI, USA Harisankar Sadasivan\* hariss@umich.edu University of Michigan Ann Arbor, MI, USA

Jack Wadden jackwadden@gmail.com University of Michigan Ann Arbor, MI, USA

Kush Goliya kgoliya@umich.edu University of Michigan Ann Arbor, MI, USA

#### CiMBA: Accelerating Genome Sequencing Through On-Device Basecalling via Compute-in-Memory

William Andrew Simon<sup>(0)</sup>, Member, IEEE, Irem Boybat<sup>(0)</sup>, Member, IEEE, Riselda Kodra<sup>(0)</sup>, Student Member, IEEE, Elena Ferro<sup>(0)</sup>, Student Member, IEEE, Gagandeep Singh<sup>(0)</sup>, Mohammed Alser<sup>(0)</sup>, Member, IEEE, Shubham Jain<sup>(0)</sup>, Member, IEEE, Hsinyu Tsai<sup>(0)</sup>, Senior Member, IEEE, Geoffrey W. Burr<sup>(0)</sup>, Fellow, IEEE, Onur Mutlu<sup>(0)</sup>, Fellow, IEEE, and Abu Sebastian<sup>(0)</sup>, Fellow, IEEE

Home / Magazines / IEEE Micro / 2021.04

#### IEEE Micro

FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications

Jul.-Aug. 2021, pp. 39-48, vol. 41 DOI Bookmark: 10.1109/MM.2021.3088396

#### SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali<sup>1</sup> Konstantinos Kanellopoulos<sup>2</sup> Joël Lindegger<sup>2</sup> Zülal Bingöl<sup>3</sup> Gurpreet S. Kalsi<sup>4</sup> Ziyi Zuo<sup>5</sup> Can Firtina<sup>2</sup> Meryem Banu Cavlak<sup>2</sup> Jeremie Kim<sup>2</sup> Nika Mansouri Ghiasi<sup>2</sup> Gagandeep Singh<sup>2</sup> Juan Gómez-Luna<sup>2</sup> Nour Almadhoun Alserr<sup>2</sup> Mohammed Alser<sup>2</sup> Sreenivas Subramoney<sup>4</sup> Can Alkan<sup>3</sup> Saugata Ghose<sup>6</sup> Onur Mutlu<sup>2</sup>



#### **Fragmented Acceleration in Genomics**

SquiggleFilter: An Accelerator for Portable Virus Detection

CiMBA: Accelerating Genome Sequencing Through

#### Most accelerators lack software frameworks — and when they exist, they're built in isolation with no shared ecosystem

#### Intensive Applications

Jul.-Aug. 2021, pp. 39-48, vol. 41 DOI Bookmark: 10.1109/MM.2021.3088396 Damla Senol Cali<sup>1</sup> Konstantinos Kanellopoulos<sup>2</sup> Joël Lindegger<sup>2</sup> Zülal Bingöl<sup>3</sup> Gurpreet S. Kalsi<sup>4</sup> Ziyi Zuo<sup>5</sup> Can Firtina<sup>2</sup> Meryem Banu Cavlak<sup>2</sup> Jeremie Kim<sup>2</sup> Nika Mansouri Ghiasi<sup>2</sup> Gagandeep Singh<sup>2</sup> Juan Gómez-Luna<sup>2</sup> Nour Almadhoun Alserr<sup>2</sup> Mohammed Alser<sup>2</sup> Sreenivas Subramoney<sup>4</sup> Can Alkan<sup>3</sup> Saugata Ghose<sup>6</sup> Onur Mutlu<sup>2</sup>



## **Enabling biologists to leverage sequencing**

#### **Comparative Genomics**



SegAlign: A Scalable GPU-based whole genome aligner [Supercomputing Conference]



#### **Clinical Genomics**

An ultra-rapid workflow for clinical whole genome sequencing [New England Journal of Medicine Nature Biotechnology]



Darwin-WGA: A fast and highly sensitive co-processor for whole genome alignments [HPCA]



### **Understanding whole genome alignment**



13 **PRINCETON** UNIVERSITY

## Seeding finds small, local matching base-pairs



## Seeding finds small, local matching base-pairs



#### Filtering aligns ~100bp around seed hits





### **High-scoring Segment Pair reduced to Anchor**





### **Extension results in the final alignments**

#### **Dynamic Programming Equations**

$$I(i,j) = \max \{H(i,j-1) - o, I(i,j-1) - e\}$$
  

$$D(i,j) = \max \{H(i-1,j) - o, D(i-1,j) - e\}$$
  

$$H(i,j) = \max \begin{cases} 0\\I(i,j)\\D(i,j)\\H(i-1,j-1) + W(r_i,q_j) \end{cases}$$

#### Alignment

| human<br>mouse | 1 <mark>AGG</mark> T <mark>AG</mark> CAA <mark>GGGGGACAGGA</mark> G |
|----------------|---------------------------------------------------------------------|
| human          | 26 AGGAGGGGACAGGAG - TG <mark>GCC</mark> AGGAGTGGCCAGGA             |
| mouse          | 36 AGGAGGGGGCAGGAAACAGCCTGCAGGGGT - AGGA                            |
| human          | 60 GGGGGCAGG                                                        |
| mouse          | 70 GGGGGCAGG                                                        |





### Filtering stage dominates the runtime



## **Enabling biologists to leverage sequencing**

#### **Comparative Genomics**



SegAlign: A Scalable GPU-based whole genome aligner [Supercomputing Conference]



Darwin-WGA: A fast and highly sensitive co-processor for whole genome alignments [HPCA]



**Clinical Genomics** 

An ultra-rapid workflow for clinical whole genome sequencing [New England Journal of Medicine Nature Biotechnology]



## SegAlign system for single chromosome pair





## Naïve approach allocates 1 seed hit/thread

 Considerably varying seed hit positions -> inefficient uncoalesced memory accesses within a warp

[Warp - basic unit for scheduling execution and memory accesses]



2. Divergent branches within a warp due to the dynamic X-drop condition for each thread



#### SegAlign allocates 1 seed hit/warp



1. Efficient bandwidth gains with coalesced memory accesses

2. Exploiting data locality within each partition using parallel prefix scan



#### 13.5x-14x speedup at ~2x cost improvement





# SegAlign's Ungapped extension kernel now in NVIDIA GenomeWorks library

https://github.com/clara-parabricks/GenomeWorks

#### GenomeWorks



#### **Overview**

GenomeWorks is a GPU-accelerated library for biological sequence analysis. This section provides a brief overview of the different components of GenomeWorks. For more detailed API documentation please refer to the documentation.



## Seed-Ungapped Filter-Extend isn't sensitive enough



Improved search heuristics find 20 000 new alignments between human and mouse genomes a

Martin C. Frith 🖾, Laurent Noé

Nucleic Acids Research, Volume 42, Issue 7, 1 April 2014, Page e59, https://doi.org/10.1093/nar/gku104 Published: 31 January 2014 Article history ▼ Increased alignment sensitivity improves the usage of genome alignments for comparative gene annotation 3

Virag Sharma, Michael Hiller 💌

Nucleic Acids Research, Volume 45, Issue 14, 21 August 2017, Pages 8369–8377, https://doi.org/10.1093/nar/gkx554 Published: 21 June 2017 Article history ▼



# Increasing indel frequency => increasing need for gapped filtering





## Seed-Gapped Filter-Extend



Replacing ungapped filtering by gapped filtering slows down the software by 200x!



## **Enabling biologists to leverage sequencing**

#### **Comparative Genomics**



SegAlign: A Scalable GPU-based whole genome aligner [Supercomputing Conference]



<u>Clinical Genomics</u>

An ultra-rapid workflow for clinical whole genome sequencing [New England Journal of Medicine Nature Biotechnology]



Darwin-WGA: A fast and highly sensitive co-processor for whole genome alignments [HPCA]



#### **Specialized Operations**



**On 14nm CPU** 35 ALU ops, 15 load/store 37 cycles 81nJ On 40nm Special Unit 1 cycle (*37x speedup*) 3.1pJ (*26,000x efficiency*) 300fJ for logic (*remainder is memory*)



30

## **Exploiting inner-loop parallelism with systolic arrays**







### **Can we adapt this architecture for extension?**





# Utilizing local memory – size is prohibitive for larger compute





### **Overlapped extension uses constant on-chip memory**

- Tiled (tile size T, overlap O) implementation inspired by GACT in Darwin
- Origin of the next tile lies at the intersection of the current traceback path with the overlap



Outside tile overlap
 Inside tile overlap
 On tile overlap border



## **Overlapped extension uses constant on-chip memory**

• Extension along a direction continues until a tile is encountered with a nonpositive maximum score





#### **Banded + extension arrays = Outer-loop parallelism**



#### **Extension** arrays





## Darwin-WGA finds genes that LASTZ does not



| dp4 1 GTGAAGCCTGGTGCTGCATC                                                                                                      | 20  |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                 | 12  |
|                                                                                                                                 | 12  |
| dm6 57 cccgttcccgttcccgttccctttcccgttTCCATTTGCATTTCCATTATCCCCGA<br>dp4 21 TCCAccatttccattgccatctccatttccatttccatgtccgtttccGTTCA | 73  |
| Seed hit 1                                                                                                                      |     |
|                                                                                                                                 |     |
| dm6 113 CCCTCAGCGATATAGATTTGAACAACTTGTGCATCGATTTGGGTCG                                                                          | 58  |
| dp4 74 CAATCAAAGATATGGACTTGAATAACTTTGGCATCGACGTGGAGCGCCTGTGGCTG                                                                 | 29  |
| Seed hit 2                                                                                                                      |     |
|                                                                                                                                 |     |
| dm6 159 GGAAIGIGCGGGAGCCGAGCIGCGIIICAAIIICAGCGAGIIAIAGIIIGGCIC                                                                  | 12  |
| dp4 130 CGCATGTGGG1GGGCGCCGAGCTGCGTTTCACTGAATCGAAGGGCAATCGGaact                                                                 | 85  |
|                                                                                                                                 |     |
|                                                                                                                                 |     |
| dm6 213 TGGATGAGGATTCGAA                                                                                                        | 41  |
| dp4 186 tgaactcaaattcaaattcaaattcaaattcaaattagcgtccgtc                                                                          | 41  |
|                                                                                                                                 |     |
|                                                                                                                                 |     |
| dm6 242 TATCGCA                                                                                                                 | 63  |
| dp4 242 TATCGCATTCGTCCTCCACGGCGTCGACGGCAGCAGCGGCGGCAGGGGGCGGCGGT2                                                               | .94 |
| Seed hit 3                                                                                                                      |     |
| Seed Int S                                                                                                                      |     |
| dm6 264 TGGCACCGCGCTAGCACTTTTGTAGTGCAAACCGTTTTCGGCCATCTTATCTAGGC                                                                | 19  |
| dp4 295 - GGTATAGCG GCATTTTTAAAATGAAAACGTTTTCGGCTGGCT ATC GGT                                                                   | 44  |
|                                                                                                                                 |     |
|                                                                                                                                 |     |
| dm6 320 GGCTCCTATGGCCACAGTCACtgttattgttgttgttgttgttgttgttgCACATGGCCAGA                                                          | 75  |
| dp4 345 GGTGCCGTTGCTATTGTTGTTGTTGCACATT-CCAGA                                                                                   | 80  |

Indels (shown by arrows) around each seed hit – dropped by ungapped filtering (*LASTZ*) but retained by gapped filtering (*Darwin-WGA*)



## **Darwin-WGA is more sensitive than LASTZ**

| Species pair | Top-10 Alignment<br>Chain Scores                                                 | Matching Base-pairs<br>within Alignments                                        | Number of Aligning Exons<br>(protein-coding genes)                                                                      |  |
|--------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| dm6-droSim1  | 16-droSim1 +0.03% 1.                                                             |                                                                                 | +0.20%                                                                                                                  |  |
| dm6-droYak2  | dm6-droYak2 +0.05% 1.41x                                                         |                                                                                 | +0.09%                                                                                                                  |  |
| dm6-dp4      | +1.86%                                                                           | 1.42x                                                                           | +0.41%                                                                                                                  |  |
| ce11-cb4     | +5.73%                                                                           | 3.12x                                                                           | +2.70%                                                                                                                  |  |
|              | Represent <u>orthologous</u><br><u>sequences (</u> derived<br>from "speciation") | Represent <u>paralagous</u><br><u>sequences</u> (derived<br>from "duplication") | Represent <u>functionally</u><br><u>relevant orthologous</u><br><u>sequences</u> , under some<br>selective pressure (at |  |

False positive rate (2-mer shuffled genome): 0.0007%



least in the target species)

## Darwin-WGA (FPGA) is 20x faster than iso-sensitive software

|                      | LASTZ<br>(CPU)     | Iso-sensitive<br>software |                          | HW config                                       | Cost per<br>hour |
|----------------------|--------------------|---------------------------|--------------------------|-------------------------------------------------|------------------|
| Darwin–WGA<br>(FPGA) | 0.1x<br>(slowdown) | 20x<br>(speed and cost)   | Darwin-<br>WGA<br>(FPGA) | 1 Xilinx Virtex<br>Ultrascale+ FPGA<br>+ 8vCPUs | \$1.65           |



## While Darwin-WGA uses the same software framework, it features a different interface





#### How about a new language?

Bioinformaticians focus on filters and recurrences.

We provide a domain-specific language to manage load balancing and scheduling.

Architects can then optimize these stages for performance.



## **Introducing FILTR**



Pipeline: sequence of producer-consumer relationships as self-contained, reusable stages

HSP: encapsulates intermediate hits/points along with metadata such as scores, positions, and alignment status

Dataflow control: built-in balancing policies or define custom strategies



## **Enabling biologists to leverage sequencing**

#### **Comparative Genomics**



SegAlign: A Scalable GPU-based whole genome aligner [Supercomputing Conference]



#### **Clinical Genomics**

An ultra-rapid workflow for clinical whole genome sequencing [New England Journal of Medicine Nature Biotechnology]



Darwin-WGA: A fast and highly sensitive co-processor for whole genome alignments [HPCA]



- 13 years
- Two-week history of dry cough, decreased appetite, chest pain and severe fatigue
- On admission to hospital in Oregon: weak heart
- Rapid deterioration
- Airlifted to Stanford hospitals
- Placed on ECMO
- Possible causes included potentially reversible (myocarditis) and irreversible (genetic heart disease)
- How to make transplant decision?
  - Biopsy?
  - Genetic testing?





#### **State-of-the-art turn-around times**





#### **DNA Sequencing**



**Base calling** 





Alignment

Human Reference Genome



## **Existing fastest turn-around in 14.5 hours**





Illumina HiSeqX



47 PRINCETON UNIVERSITY

#### **Compute dominates the new pipeline with 30hour turnaround time**





**Nanopore PromethION** 

- Longer reads => more complicated computation
- Higher error rate => double the amount of sequencing
- No custom ASIC/FPGA



## **Enabling biologists to leverage sequencing**

#### **Comparative Genomics**



SegAlign: A Scalable GPU-based whole genome aligner [Supercomputing Conference]



**Clinical Genomics** 

An ultra-rapid workflow for clinical whole genome sequencing [New England Journal of Medicine Nature Biotechnology]



Darwin-WGA: A fast and highly sensitive co-processor for whole genome alignments [HPCA]



## **Traditional computational pipeline**





#### Nanopore's "real-time" advantage

- Signal files are generated as soon as the strand passes through the nanopore
- Ideally, we can start base calling right away





## Modified pipeline – overlap base calling and sequencing





#### Challenge1: transfer TB data to cloud

- 2.3 TB of data in 1.5 hour = 3.4 Gbps
- Utilizing available bandwidth



#### Challenge1: transfer TB data to cloud

- 1. VBZ compression for raw signal file 30% less file size
- 2. Optimize file size for
  - (a) number of parallel uploads
  - (b) latency overhead for each new file





**Cloud Storage** 

**Signal Files** 



#### Near real time I/O

### Challenge 2: Optimized distributed system

- Support streaming dataflow
- Minimize orchestration/inter-node communication
- Make sure all resources are fully utilized based on rate of data generation



#### Near real time I/O

#### Challenge 2: Optimized distributed system

- 1. Analysis for specific set of flow cells assigned to each instance
- 2. Stateless pull architecture
- 3. Pipelining different compute stages



## Near real time pipeline





### **Variant Calling**







#### **10.5-hour compute-optimized workflow**





#### Diagnosis made in

## 11.3 hrs

Genetic Dilated Cardiomyopathy

The patient was urgently listed for transplant and received a new heart 21 days later.







### **Co-design across stages**



Negligible impact of sample identification step





#### **Co-design across stages**

Close collaboration with genetic counselors reduces the time for curation with more accurate variant calling

Negligible impact of sample identification step



Non Barcoded



## Ultra-rapid pipeline with 8 hour turnaround time



#### **Diagnosis in 8 hours.. Or less**

![](_page_63_Figure_1.jpeg)

![](_page_63_Picture_2.jpeg)

#### Conclusions

#### Performance in domain-specific design significantly depends on

- Co-Design through integrated systems architecture and algorithmic re-design
- Deep understanding of the domain

#### Landscape for genomics as a domain

- Technological Agility Must keep pace with rapid tech and algorithmic evolution
- Hardware Ramifications GPUs/FPGAs are better platforms; Software framework are critical
- Community Dynamics Community engagement drives adoption of innovations

![](_page_64_Picture_8.jpeg)

## Thank you!

## Workloads in LASTZ v/s Darwin-WGA

![](_page_66_Figure_1.jpeg)

![](_page_66_Picture_2.jpeg)

TSMC 40nm DC synthesis (not a chip prototype)

|           |                   | Configuration            | Area (mm <sup>2</sup> ) | Power (W) |                 |
|-----------|-------------------|--------------------------|-------------------------|-----------|-----------------|
| Filtering | Logic             | 64 x (64PE array)        | 16.6                    | 25.6      | ~60% chip power |
| Extension | Logic             | 12 x (64PE array)        | 4.2                     | 6.72      |                 |
|           | Traceback<br>SRAM | 12 x (64PE x<br>16KB/PE) | 15.1                    | 7.92      | ~40% chip area  |
| DRAM      | DDR4-2400R        | 4 x 32GB                 | -                       | 3.10      |                 |
| TOTAL     |                   |                          | 35.9                    | 43.34     |                 |

![](_page_67_Picture_3.jpeg)

## Darwin-WGA is 2 orders of magnitude faster than iso-sensitive software

|                      | LASTZ<br>(CPU)      | Iso-sensitive<br>software |                          | HW config                                       | Cost per<br>hour |
|----------------------|---------------------|---------------------------|--------------------------|-------------------------------------------------|------------------|
|                      |                     |                           | LASTZ                    | 36 vCPUs                                        | \$1.59           |
| Darwin–WGA<br>(FPGA) | 0.1 x<br>(slowdown) | 20x<br>(speed and cost)   | Darwin-<br>WGA<br>(FPGA) | 1 Xilinx Virtex<br>Ultrascale+<br>FPGA + 8vCPUs | \$1.65           |
| Darwin–WGA<br>(ASIC) | 1.5x                | 300x<br>(1500x perf/Watt) | Darwin-<br>WGA<br>(ASIC) | 36 mm <sup>2</sup> ,<br>43 Watt, 40nm<br>TSMC   |                  |

![](_page_68_Picture_2.jpeg)