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But, We Need More Performance!
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Cost/GB of genome data NVIDIA, with no solid Competition, is out here
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GPU Scalability Trend
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Volta— V100 (2017) — 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS

o 32 bit tensor: ~112 TFLOPS

o 21B transistors —~300 W - 815 mm?

Ampere — A100 (2020) — 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS

o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!

o 52B transistors —~300 W - 826 mm?

Hopper — H100 (2022) — 4nm ~5$25,000 at release

o 32 bit CUDA: ~67 TFLOPS

o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors —~300 W - 814 mm?

Blackwell — B100 (2024) — 4nm ~$35,000 at release

o 32 bit CUDA: ~60 TFLOPS

o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm?
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GPU Scalability Trend

NVIDIA, with no solid competition, is out here 30
competing against Moore's Law instead. 32 bit float scaling/$

NI
(Up)

Blackwell
20,000 TFLOPS
FP4

N
o

<

TFLOPS/1,000S
=
i

=
o

Hopper 5
4,000 TFLOPS
FP8

Ampere

o 620 TFLOPS ‘ 0
Pascal ora FP16 Moore's Law

130 TFLOPS

W pes FP16 Volta Ampere Hopper Blackwell

CUDA/S Tensor32/S

O £LZUOD LIdIIDIDLUID = T 0 11t



GPU Scalability Trend

NVIDIA, with no solid competition, is out here 30
competing against Moore's Law instead. 32 bit float scaling/$

NI
(Up)

Blackwell
20,000 TFLOPS
FP4

N
o

S

=
o

TFLOPS/1,000S
=
i

Hopper 5
4,000 TFLOPS
FP8

Ampere 0

620 TFLOPS ,
Pascal Volta FP16 Moore's Law

130 TFLOPS

W pes FP16 Volta Ampere Hopper Blackwell

CUDA/S Tensor32/S

O £LZUOD LIdIIDIDLUID = T 0 11t

What about the rest of us?




N e TR

o

An Example: Graph Neural Networks!




3 et - . .. LAl
An Example: Graph Neural Networks!

S

‘ o.. ’ Pf‘ - : . f '~ X L .‘. . 7
Irregular computatlon patterns 5" i :

‘\_ Xl




3 et - . .. LAl
An Example: Graph Neural Networks!

S

~_: 3 é,‘ \.‘r\—-.-ﬁ : ,1"-’ .\\-? - . >
- . \.. .a ,--E . - »
\\ IrregUIar Computat|0n patterns . I \

N -4 Bai . 3 T\
- %y Irregular memory accesses ig
d "’.*.'T;. »i .

~ Ax e h T & (X718 '
6 bR RN G LR

y ‘e




T et lad . . LA L
An Example: Graph Neural Networks!
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An Example: Graph Neural Networks!
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De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense
and impractical for clinical genome sequencing” 2

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.
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“We have been running a single NextDenovo instance
for 1 yearona 1 TB AWS instance.
We hope it will finish soon”
-- One of our research collaborators
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De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense
and impractical for clinical genome sequencing” 2

“We have been running a single NextDenovo instance
for 1 yearona 1 TB AWS instance.
We hope it will finish soon”
-- One of our research collaborators

Hurrah! A systems research problem!

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.




What to accelerate, for De Novo Assembly?
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What to accelerate, for De Novo Assembly?

Correction
Acceleration Raw_align 9 2,203
Target .
(minimap2)
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What to accelerate, for De Novo Assembly?

Acceleration
Goal 2: “Minimap 2” Target

For N-to-N genome alignment

Acceleration
Target
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Goal 1: Graph Construction N
and Traversal Memory
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Graph Analytics in De Novo Assembly

[ Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphes, ...
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High-Performance Graph Analytics in SSDs

DRAM is Not Scaling

0 Slowing DRAM density scaling
Q Graphs scaling faster than memory can!

a SSDs are cheaper... Can we use those instead?
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Our Solution: Sorting Accesses [kanget.al., bAC2024]
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But sorting is expensive...?
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Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

0 Key idea: Asynchronous query with callback
- Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...
end

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden
- Transparently group accesses to the same page

Minimize I/O amplification!

- Other transparent optimizations can be hidden

Out-of-order,
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A Library of Optimizations to Hide

J Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page

d Probabilistic filtering (Done)
o Use bloom filter to avoid storage reads which will return negative results
o e.g., Nonexistent graph edges, Nodes with no outgoing edge

(1 Compression (In Progress)

o Application-specific compression, e.g., LZ4, ZFP, XOR, Varlnt
o Reference-based compression



Preliminary Evaluation: Triangle Counting

0 Counts the number of triangles in a graph

0 Important application
One of four benchmarks in MIT/Lincoln Labs GraphChallenge!®!

0 Involves two neighborhood queries

ForeachV,
enumerate permutations of neighbor(V) - (A,B)

check whether B € neighbor(A)

- Bloom filter trained on graph edges
Avoid neighborhood queries for A if edge(A,B) doesn’t exist

[9] https://graphchallenge.mit.edu/challenges
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- GraphBLAS
HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)
- A lot more which failed from memory limitations (e.g., Neo4))
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O State-of-the-art baselines:
GraphBLAS

HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)

A lot more which failed from memory limitations (e.g., Neo4))

a Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU

+ One Samsung SmartSSD for SSD+FPGA

Our approach only used 4 threads + 4 GB memory
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Ongoing Work 2: Alignment Accelerator

J Many De Novo tools internally use “Minimap2”

o Input: Reference, reads
o Output: mapping between them

(J De Novo does not use a reference, reads act also as reference
o Massively increased work: 10x or more!
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Chaining

Vast majority of memory

 Random-access during hash construction

 Randome-access during hash lookup
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~50% of computation

Read: ACGT...

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

»

Goal: Drop-in replacement of Minimap?2

1/10 memory, 10x performance

... Stay tuned!

——1

Reads from the same SSD page
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Referer

e Solution 1: Compress the matrix
* Solution 2: Parallel backtracking




Long-Term Goal:
Precision ("Personalized”) Medicine

Future Focus!

Analysis!
(Biomarkers, regulators,
antigens,...)

Cancer Patient Sequenced
Genome



Our Efforts So Far...

ISCA 2018

Frontiers 2021

FPL 2022

PACT 2023

DAC 2024

NVM + FPGA

NVM

DRAM + FPGA

NVM + FPGA

NVM + FPGA

vertex-centric graph analytics
Genomic graphs (SMuFin)
Genomic graphs (De Bruijn)
Graph Neural Networks

Software-Driven graph analytics



Our Efforts So Far...

ISCA 2018 NVM + FPGA vertex-centric graph analytics
Frontiers 2021 NVM Genomic graphs (SMuFin)

FPL 2022 DRAM + FPGA Genomic graphs (De Bruijn)
PACT 2023 NVM + FPGA Graph Neural Networks

DAC 2024 NVM + FPGA Software-Driven graph analytics

Genome Compression Graph Compression Parallel Backtracking
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ARDA is Interested in a LOT of things!

J Graph Neural Networks

J Edge processing — Earthquakes and Wildfires
J Edge processing — Smart Agriculture

J Processing-In-Memory

J Accelerating Program Analysis

J Scientific Computing — Symbolic Regression

d Oh my!



Students Involved

a PhD Se-Min Lim @ UCI
. Scalable Graph Neural Networks with near-storage acceleration

2 PhD Seongyoung Kang @ UCI
. Scalable Subgraph Isomorphism with near-storage acceleration

. Triangle counting demo being developed
« Plan to present to Samsung collaborators (Xuebin Yao, Reza Soltaniyeh)

W& 0 PhD Esmerald Aliaj @ UCI
e . Compiler support for hardware kernel generation
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