System architectures with adaptive accelerators for genomics

Sang-Woo Jun

Assistant Professor, Department of Computer Science University of California, Irvine

System architectures with adaptive accelerators for genomics

Sang-Woo Jun Assistant Professor, Department of Computer Science University of California, Irvine

Working to Bridge the Silos...

[3] Database Architects, "The Great CPU Stagnation" 2023[4] Marvell 2020 Investor day – Slide 43

[3] Database Architects, "The Great CPU Stagnation" 2023[4] Marvell 2020 Investor day – Slide 43

Performance

[3] Database Architects, "The Great CPU Stagnation" 2023[4] Marvell 2020 Investor day – Slide 43

Performance

Specialization for Performance & Efficiency

Specialization for Performance & Efficiency

Specialization for Performance & Efficiency

NVIDIA, with no solid competition, is out here competing against **Moore's Law** instead.

0

- Volta V100 (2017) 12nm ~\$10,000 at release 32 bit CUDA: ~14 TELOPS \cap 32 bit tensor: ~112 TFLOPS \circ 21B transistors – ~300 W - 815 mm² Ampere – A100 (2020) – 7nm ~\$10,000 at release 32 bit CUDA: ~19.5 TFLOPS o 32 bit tensor: ~156 TFLOPS *TF32 != FP32! \circ 52B transistors – ~300 W - 826 mm² Hopper – H100 (2022) – 4nm ~\$25,000 at release 32 bit CUDA: ~67 TFLOPS 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32! Ο 80B transistors – ~300 W - 814 mm² \cap Blackwell – B100 (2024) – 4nm ~\$35,000 at release 32 bit CUDA: ~60 TFLOPS \cap 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32! Ο
 - \circ 208B transistors ?? mm²

- Volta V100 (2017) 12nm ~\$10,000 at release
 - o 32 bit CUDA: ~14 TFLOPS
 - 32 bit tensor: ~112 TFLOPS
 - 21B transistors ~300 W 815 mm²
- Ampere A100 (2020) 7nm ~\$10,000 at release
 - o 32 bit CUDA: ~19.5 TFLOPS
 - 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
 - 52B transistors ~300 W 826 mm²
- □ Hopper H100 (2022) 4nm ~\$25,000 at release
 - o 32 bit CUDA: ~67 TFLOPS
 - 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
 - 80B transistors ~300 W 814 mm²
- □ Blackwell B100 (2024) 4nm ~\$35,000 at release
 - 32 bit CUDA: ~60 TFLOPS
 - o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
 - 208B transistors ?? mm²

Volta – V100 (2017) – 12nm ~\$10,000 at release
32 bit CUDA: ~14 TFLOPS
32 bit tensor: ~112 TFLOPS
21B transistors – ~300 W - 815 mm²

Ampere – A100 (2020) – 7nm ~\$10,000 at release

- <u>32 bit CUDA: ~19.5 TFLOPS</u>
- o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
- 52B transistors ~300 W 826 mm²

□ Hopper – H100 (2022) – 4nm ~\$25,000 at release

- 32 bit CUDA: ~67 TFLOPS
- 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
- 80B transistors ~300 W 814 mm²
- □ Blackwell B100 (2024) 4nm ~\$35,000 at release
 - <u>32 bit CUDA: ~60 TFLOPS</u>
 - 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
 - 208B transistors ?? mm²

NVIDIA, with no solid competition, is out here competing against **Moore's Law** instead.

30

NVIDIA, with no solid competition, is out here competing against **Moore's Law** instead.

30

What about the rest of us?

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

Low warp utilization

Isn't GPU throughput supposed to be a multi-TFLOP?

Isn't GPU throughput supposed to be a multi-TFLOP?

Irregular memory accesses

Graphs larger than GPU memory

Can FPGAs save us?

An Example: Graph Neural Networks!

Can FPGAs save us?

An Example: Graph Neural Networks!

Can FPGAs save us?

An Example: Graph Neural Networks!

Can FPGAs save us?

Not by itself!

Repeated discovery:

Algorithm and system architecture must co-optimize with hardware acceleration!

Not today's topic...

But, We Need More Performance!

NVIDIA, with no solid competition, is out here competing against **Moore's Law** instead.

0

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

But, We Need More Performance!

NVIDIA, with no solid competition, is out here competing against Moore's Law instead.

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

But, We Need More Performance!

NVIDIA, with no solid competition, is out here competing against **Moore's Law** instead.

0

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cancer Patient

Genome Assembly Methods

Long read samples

De-Novo Assembly

De-Novo Assembly

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.
[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.
[3] Meyn, Stephen. "A critical tool for human genomics and precision medicine: De novo human genome assembly." University of Wisconsin–Madison Research Blog

De-Novo Assembly

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.
[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.
[3] Meyn, Stephen. "A critical tool for human genomics and precision medicine: De novo human genome assembly." University of Wisconsin–Madison Research Blog

Genome Assembly Methods

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.
[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.
[3] Meyn, Stephen. "A critical tool for human genomics and precision medicine: De novo human genome assembly." University of Wisconsin–Madison Research Blog

De Novo Assembly for Personalized Medicine

"However, *de novo* assembly, particularly of short reads, is computationally intense and impractical for clinical genome sequencing" ^[2]

De Novo Assembly for Personalized Medicine

"However, *de novo* assembly, particularly of short reads, is computationally intense and impractical for clinical genome sequencing" ^[2]

"We have been running a single NextDenovo instance for 1 year on a 1 TB AWS instance. We hope it will finish soon" -- One of our research collaborators

De Novo Assembly for Personalized Medicine

"However, *de novo* assembly, particularly of short reads, is computationally intense and impractical for clinical genome sequencing" ^[2]

"We have been running a single NextDenovo instance for 1 year on a 1 TB AWS instance. We hope it will finish soon" -- One of our research collaborators

Hurrah! A systems research problem!

Correction		
Step	Mem (GB)	Time (s)
Raw_align (minimap2)	9	2,203
Sort	< 9	176
Next_correct	< 9	1,851
Alignment		
Step	Mem (GB)	Time (s)
Step Cns_align (minimap2)	Mem (GB) 8	Time (s) 3,907
Step Cns_align (minimap2) Ctg_graph	Mem (GB) 8 < 8	Time (s) 3,907 7.8
StepCns_align (minimap2)Ctg_graphCtg_align (minimap2)	Mem (GB) 8 < 8 12	Time (s) 3,907 7.8 390

	Correction		
	Step	Mem (GB)	Time (s)
Acceleration Target	Raw_align (minimap2)	9	2,203
	Sort	< 9	176
Acceleration Target	Next_correct	< 9	1,851
	, angrinnent		
	Step	Mem (GB)	Time (s)
Acceleration Target	Step Cns_align (minimap2)	Mem (GB) 8	Time (s) 3,907
Acceleration Target	Step Cns_align (minimap2) Ctg_graph	Mem (GB) 8 < 8	Time (s) 3,907 7.8
Acceleration Target	StepCns_align (minimap2)Ctg_graphCtg_align (minimap2)	Mem (GB) 8 < 8 12	Time (s) 3,907 7.8 390

	Correction		
	Step	Mem (GB)	Time (s)
Acceleration Target	Raw_align (minimap2)	9	2,203
	Sort	< 9	176
Acceleration	Next_correct	< 9	1,851
larget	Alignment		
	Step	Mem (GB)	Time (s)
Acceleration Target	Cns_align (minimap2)	8	3,907
Acceleration Target	Cns_align (minimap2) Ctg_graph	8 < 8	3,907 7.8
Acceleration Target	Cns_align (minimap2) Ctg_graph Ctg_align (minimap2)	8 < 8 12	3,907 7.8 390

□ Big source of scalability concerns: Handling graphs

• Overlap graphs, De Bruijn Graphs, String Graphs, ...

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Big source of scalability concerns: Handling graphs

- Overlap graphs, De Bruijn Graphs, String Graphs, ...
- Quite large!
 - +500 GB for Human
 - TBs for some plants (Pine, Onion, ...)

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Big source of scalability concerns: Handling graphs

- Overlap graphs, De Bruijn Graphs, String Graphs, ...
- Quite large!
 - +500 GB for Human
 - TBs for some plants (Pine, Onion, ...)
- Vertices are small (few bytes)

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Big source of scalability concerns: Handling graphs

- Overlap graphs, De Bruijn Graphs, String Graphs, ...
- Quite large!
 - +500 GB for Human
 - TBs for some plants (Pine, Onion, ...)
- \circ Vertices are small (few bytes)
- Construct, then traverse

Big source of scalability concerns: Handling graphs

- Overlap graphs, De Bruijn Graphs, String Graphs, ...
- Quite large!
 - +500 GB for Human
 - TBs for some plants (Pine, Onion, ...)
- \circ Vertices are small (few bytes)
- Construct, then traverse

Irregular computation patterns

Large memory requirements

Not readily parallelizable

High-Performance Graph Analytics in SSDs

- Slowing DRAM density scaling
 Graphs scaling faster than memory can!
- □ SSDs are cheaper... Can we use those instead?

Slowing DRAM density scaling

□ Graphs scaling faster than memory can!

□ SSDs are cheaper... Can we use those instead?

Slowing DRAM density scaling

□ Graphs scaling faster than memory can!

□ SSDs are cheaper... Can we use those instead?

Unfortunately, they are also slow...

- Slowing DRAM density scaling
 - □ Graphs scaling faster than memory can!
- □ SSDs are cheaper... Can we use those instead?

- Slowing DRAM density scaling
 - □ Graphs scaling faster than memory can!
- □ SSDs are cheaper... Can we use those instead?

Software must issue many non-blocking access requests!

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

- ☐ Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback

- Out-of-order, Latency-Insensitive
- Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback

- Out-of-order, Latency-Insensitive
- Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Many queries can be in flight at once (>millions)

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
```

```
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Many queries can be in flight at once (>millions)

Out-of-order,

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
```

```
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
```

```
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden
- Transparently group accesses to the same page

Out-of-order,

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
```

```
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden
- Transparently group accesses to the same page

Out-of-order,

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
```

```
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden
- Transparently group accesses to the same page Minimize I/O amplification!

Out-of-order,

- Targeting near-storage acceleration (e.g., SmartSSD)
- □ Key idea: Asynchronous query with callback
 - Programmer-specified callback function called when data is ready

```
foreach vertex.getNeighbors(callback=myCallback)
```

```
function myCallback(src, dst[]) begin
... application-specific logic ...
end
```

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden
- Transparently group accesses to the same page Minimize I/O amplification!
- Other transparent optimizations can be hidden

Out-of-order,

A Library of Optimizations to Hide

- □ Access re-organization (Done)
 - $\circ~$ Burst-sorting accelerator to group accesses to the same page

A Library of Optimizations to Hide

- □ Access re-organization (Done)
 - $\circ~$ Burst-sorting accelerator to group accesses to the same page
- Probabilistic filtering (Done)
 - \circ Use bloom filter to avoid storage reads which will return negative results
 - o e.g., Nonexistent graph edges, Nodes with no outgoing edge

A Library of Optimizations to Hide

- □ Access re-organization (Done)
 - Burst-sorting accelerator to group accesses to the same page
- Probabilistic filtering (Done)
 - $\circ~$ Use bloom filter to avoid storage reads which will return negative results
 - e.g., Nonexistent graph edges, Nodes with no outgoing edge
- □ Compression (In Progress)
 - Application-specific compression, e.g., LZ4, ZFP, XOR, VarInt
 - Reference-based compression

Preliminary Evaluation: Triangle Counting

- Counts the number of triangles in a graph
- Important application
 - One of four benchmarks in MIT/Lincoln Labs GraphChallenge^[9]
- Involves two neighborhood queries
 - For each V, enumerate permutations of neighbor(V) → (A,B) check whether B ∈ neighbor(A)
 - Bloom filter trained on graph edges Avoid neighborhood queries for A if edge(A,B) doesn't exist

Experimental Setup

- □ State-of-the-art baselines:
 - GraphBLAS
 - HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)
 - A lot more which failed from memory limitations (e.g., Neo4J)
- Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU
 - + <u>One</u> Samsung SmartSSD for SSD+FPGA
 - Our approach only used 4 threads + 4 GB memory

Experimental Setup

- □ State-of-the-art baselines:
 - GraphBLAS
 - HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)
 - A lot more which failed from memory limitations (e.g., Neo4J)
- Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU
 - + <u>One</u> Samsung SmartSSD for SSD+FPGA
 - Our approach only used 4 threads + 4 GB memory

Graph	Edge # (Billion)
DARPA	0.44
V1r	0.46
MAWI	0.48
Graph500	1.05
Twitter	1.46

¹/₄ Cost, Comparable performance

What to accelerate, for De Novo Assembly?

What to accelerate, for De Novo Assembly?

□ Many De Novo tools internally use "Minimap2"

- Input: Reference, reads
- $\circ~$ Output: mapping between them
- De Novo does not use a reference, reads act also as reference
 - Massively increased work: 10x or more!

- Random-access during hash construction
- Random-access during hash lookup

- Random-access during hash construction
- Random-access during hash lookup

- Random-access during hash construction
- Random-access during hash lookup

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?)
- Score matrix is too large... (PCIe bottleneck!)

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?)
- Score matrix is too large... (PCIe bottleneck!)

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?)
- Score matrix is too large... (PCIe bottleneck!)

Score matrix computation: Parallel

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?)
- Score matrix is too large... (PCIe bottleneck!)

- Score matrix computation: Parallel
- Score matrix: Large

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?)
- Score matrix is too large... (PCIe bottleneck!)

- Score matrix computation: Parallel
- Score matrix: Large
- Backtracking: Sequential

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?) ٠
- Score matrix is too large... (PCIe bottleneck!) •

- Score matrix computation: Parallel
- Score matrix: Large
- **Backtracking: Sequential**
- Solution 1: Compress the matrix

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?)
- Score matrix is too large... (PCIe bottleneck!)

- Random-access during hash construction
- Random-access during hash lookup

- Backtracking needs fast clock (CPU?) ٠
- Score matrix is too large... (PCIe bottleneck!) •

Solution 2: Parallel backtracking

Long-Term Goal: Precision ("Personalized") Medicine

Our Efforts So Far...

ISCA 2018	NVM + FPGA	vertex-centric graph analytics	
Frontiers 2021	NVM	Genomic graphs (SMuFin)	
FPL 2022	DRAM + FPGA	Genomic graphs (De Bruijn)	
PACT 2023	NVM + FPGA	Graph Neural Networks	
DAC 2024	NVM + FPGA	Software-Driven graph analytics	

Our Efforts So Far...

ISCA 2018	NVM + FP	GA	vertex-centric gr	aph analytics
Frontiers 2021	NVM		Genomic graphs (SMuFin)	
FPL 2022	DRAM + FPGA		Genomic graphs (De Bruijn)	
PACT 2023	NVM + FP	GA	Graph Neural Ne	etworks
DAC 2024	NVM + FP	GA	Software-Driven	graph analytics
Genome Compres	sion	Graph Cor	npression	Parallel Backtracking

ARDA is Interested in a LOT of things!

ARDA is Interested in a LOT of things!

- Graph Neural Networks
- □ Edge processing Earthquakes and Wildfires
- □ Edge processing Smart Agriculture
- □ Processing-In-Memory
- Accelerating Program Analysis
- □ Scientific Computing Symbolic Regression

Oh my!

Students Involved

- PhD Se-Min Lim @ UCI
 - Scalable Graph Neural Networks with near-storage acceleration

- PhD Seongyoung Kang @ UCI
 - Scalable Subgraph Isomorphism with near-storage acceleration
 - Triangle counting demo being developed
 - Plan to present to Samsung collaborators (Xuebin Yao, Reza Soltaniyeh)

- PhD Esmerald Aliaj @ UCI
 - Compiler support for hardware kernel generation