
System architectures
with adaptive accelerators

for genomics

Sang-Woo Jun

Assistant Professor, Department of Computer Science

University of California, Irvine

System architectures
with adaptive accelerators

for genomics

Sang-Woo Jun

Assistant Professor, Department of Computer Science

University of California, Irvine

ARDA

Working to Bridge the Silos…

Photo credit: https://unsplash.com/@waldemarbrandt67w

CS Genomics

The Usual Doom and Gloom

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day – Slide 43

The Usual Doom and Gloom

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day – Slide 43

The Usual Doom and Gloom

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day – Slide 43

The Usual Doom and Gloom

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day – Slide 43

Cost/GB of DRAM

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

Specialization for Performance & Efficiency

More general

More
efficient

CPU

ASIC

Specialization for Performance & Efficiency

More general

More
efficient

CPU

FPGA

GPU (CUDA)

ASIC

Specialization for Performance & Efficiency

More general

More
efficient

CPU

FPGA

ASIC

GPU (Tensor)

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2

GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2

GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2

GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2

32 bit float scaling

GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2

32 bit float scaling 32 bit float scaling/$

GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2

32 bit float scaling 32 bit float scaling/$

GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2

What about the rest of us?

32 bit float scaling 32 bit float scaling/$

An Example: Graph Neural Networks!

An Example: Graph Neural Networks!

Irregular computation patterns

Low warp utilization

An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Low warp utilization

An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

Low warp utilization

GPU for GCN in practice

`

GPU for GCN in practice

`

GPU for GCN in practice

`

GPU for GCN in practice

`

GPU for GCN in practice

GPU for GCN in practice

GPU for GCN in practice

Isn’t GPU throughput supposed to be a multi-TFLOP?

GPU for GCN in practice

Isn’t GPU throughput supposed to be a multi-TFLOP?

An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

Can FPGAs save us?

An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

Can FPGAs save us?

An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

Can FPGAs save us?

An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

Can FPGAs save us?

Not by itself!

Quick Plug -- A Whole-System Solution:
Barad-dur [An et. al., PACT 2023]

Quick Plug -- A Whole-System Solution:
Barad-dur [An et. al., PACT 2023]

Quick Plug -- A Whole-System Solution:
Barad-dur [An et. al., PACT 2023]

Not today’s topic…

Quick Plug -- A Whole-System Solution:
Barad-dur [An et. al., PACT 2023]

Not today’s topic…

Repeated discovery:
Algorithm and system architecture must co-optimize with hardware acceleration!

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

Irregular computation patterns

Large memory requirements

Not readily parallelizable

Another Application Target:
Precision (“Personalized”) Medicine

Cancer Patient

Another Application Target:
Precision (“Personalized”) Medicine

Cancer Patient Sequenced
Genome

Another Application Target:
Precision (“Personalized”) Medicine

Cancer Patient

Analysis!
(Biomarkers, regulators,

antigens,…)

Sequenced
Genome

Another Application Target:
Precision (“Personalized”) Medicine

Cancer Patient

Analysis!
(Biomarkers, regulators,

antigens,…)

Sequenced
Genome

Another Application Target:
Precision (“Personalized”) Medicine

Cancer Patient

Analysis!
(Biomarkers, regulators,

antigens,…)

Sequenced
Genome

Current Focus!

Genome Assembly Methods

Long read
samples

Genome Assembly Methods

Reference-Based Assembly

Pre-assembled reference

Long read
samples

Genome Assembly Methods

Reference-Based Assembly De-Novo Assembly

Pre-assembled reference

Long read
samples

Genome Assembly Methods

Reference-Based Assembly De-Novo Assembly

Pre-assembled reference

Long read
samples

[1][2][3]

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

[3] Meyn, Stephen. “A critical tool for human genomics and precision medicine: De novo human genome assembly.” University of Wisconsin–Madison Research Blog

Genome Assembly Methods

Reference-Based Assembly De-Novo Assembly

Pre-assembled reference

Long read
samples

[1][2][3]

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

[3] Meyn, Stephen. “A critical tool for human genomics and precision medicine: De novo human genome assembly.” University of Wisconsin–Madison Research Blog

$

Genome Assembly Methods

Reference-Based Assembly De-Novo Assembly

Pre-assembled reference

Long read
samples

[1][2][3]

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

[3] Meyn, Stephen. “A critical tool for human genomics and precision medicine: De novo human genome assembly.” University of Wisconsin–Madison Research Blog

$
$$$$

De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense

and impractical for clinical genome sequencing” [2]

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense

and impractical for clinical genome sequencing” [2]

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

“We have been running a single NextDenovo instance
 for 1 year on a 1 TB AWS instance.

We hope it will finish soon”
-- One of our research collaborators

De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense

and impractical for clinical genome sequencing” [2]

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

“We have been running a single NextDenovo instance
 for 1 year on a 1 TB AWS instance.

We hope it will finish soon”
-- One of our research collaborators

Hurrah! A systems research problem!

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration
Target

Acceleration
Target

Acceleration
Target

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration
Target

Acceleration
Target

Acceleration
Target

Memory
Bottleneck

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration
Target

Acceleration
Target

Acceleration
Target

Memory
Bottleneck

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration
Target

Acceleration
Target

Acceleration
Target

Memory
Bottleneck

Goal 1: Graph Construction
and Traversal

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration
Target

Acceleration
Target

Acceleration
Target

Memory
Bottleneck

Goal 1: Graph Construction
and Traversal

Goal 2: “Minimap 2”
For N-to-N genome alignment

Graph Analytics in De Novo Assembly

❑ Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphs, …

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Graph Analytics in De Novo Assembly

❑ Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphs, …

o Quite large!
• +500 GB for Human

• TBs for some plants (Pine, Onion, …)

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Graph Analytics in De Novo Assembly

❑ Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphs, …

o Quite large!
• +500 GB for Human

• TBs for some plants (Pine, Onion, …)

o Vertices are small (few bytes)

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Graph Analytics in De Novo Assembly

❑ Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphs, …

o Quite large!
• +500 GB for Human

• TBs for some plants (Pine, Onion, …)

o Vertices are small (few bytes)

o Construct, then traverse

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Graph Analytics in De Novo Assembly

❑ Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphs, …

o Quite large!
• +500 GB for Human

• TBs for some plants (Pine, Onion, …)

o Vertices are small (few bytes)

o Construct, then traverse

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Irregular computation patterns

Large memory requirements

Not readily parallelizable

High-Performance Graph Analytics in SSDs

❑ Slowing DRAM density scaling
❑ Graphs scaling faster than memory can!

❑ SSDs are cheaper… Can we use those instead?

Cost/GB of DRAM

High-Performance Graph Analytics in SSDs

❑ Slowing DRAM density scaling
❑ Graphs scaling faster than memory can!

❑ SSDs are cheaper… Can we use those instead?

DDR5 NVMe

$3,000/TB $50/TB

200 W/TB <10 W/TB

Cost/GB of DRAM

High-Performance Graph Analytics in SSDs

❑ Slowing DRAM density scaling
❑ Graphs scaling faster than memory can!

❑ SSDs are cheaper… Can we use those instead?

DDR5 NVMe

$3,000/TB $50/TB

200 W/TB <10 W/TB

Unfortunately, they are also slow…

Cost/GB of DRAM

High-Performance Graph Analytics in SSDs

❑ Slowing DRAM density scaling
❑ Graphs scaling faster than memory can!

❑ SSDs are cheaper… Can we use those instead?

DDR5 NVMe

$3,000/TB $50/TB

200 W/TB <10 W/TB

Unfortunately, they are also slow…

400+ GB/s 10+ GB/s

~10 ns ~10 µs

64 Byte cache lines 8 – 64 KB pages

Cost/GB of DRAM

High-Performance Graph Analytics in SSDs

❑ Slowing DRAM density scaling
❑ Graphs scaling faster than memory can!

❑ SSDs are cheaper… Can we use those instead?

DDR5 NVMe

$3,000/TB $50/TB

200 W/TB <10 W/TB

Unfortunately, they are also slow…

400+ GB/s 10+ GB/s

~10 ns ~10 µs

64 Byte cache lines 8 – 64 KB pages

I/O amplification for random accesses

Cost/GB of DRAM

Our Solution: Sorting Accesses

…
Pages

[Kang et. al., DAC 2024]

Our Solution: Sorting Accesses

…

Random

Pages

[Kang et. al., DAC 2024]

Our Solution: Sorting Accesses

…

Random

Pages

Collect,
Sort

[Kang et. al., DAC 2024]

Our Solution: Sorting Accesses

…

Random

Pages

Collect,
Sort

[Kang et. al., DAC 2024]

Our Solution: Sorting Accesses

…

Random

Pages

Collect,
Sort

Not Random

[Kang et. al., DAC 2024]

Our Solution: Sorting Accesses

…

Random

Pages

Collect,
Sort

Not Random

But sorting is expensive…?

[Kang et. al., DAC 2024]

Our Solution: Sorting Accesses

…

Random

Pages

Collect,
Sort

Not Random

But sorting is expensive…?

FPGA acceleration!

[Kang et. al., DAC 2024]

FPGA Radix Sorter

Software SSD
Random

FPGA Radix Sorter

Software SSD
Random

FPGA
Bursts

FPGA Radix Sorter

Software SSD
Random

FPGA
Bursts

FPGA Radix Sorter

Software SSD
Random

FPGA
Bursts

Software must issue many non-blocking access requests!

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

Out-of-order,
Latency-Insensitive

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

Out-of-order,
Latency-Insensitive

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

Requests

Responses

Out-of-order,
Latency-Insensitive

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

- Storage access latency can be hidden

Requests

Responses

Out-of-order,
Latency-Insensitive

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

- Storage access latency can be hidden

- Transparently group accesses to the same page

Requests

Responses

Out-of-order,
Latency-Insensitive

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

- Storage access latency can be hidden

- Transparently group accesses to the same page

Requests

Responses

Reads from the same SSD page

Out-of-order,
Latency-Insensitive

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

- Storage access latency can be hidden

- Transparently group accesses to the same page

Requests

Responses

Reads from the same SSD page
Minimize I/O amplification!

Out-of-order,
Latency-Insensitive

Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

- Storage access latency can be hidden

- Transparently group accesses to the same page

Requests

Responses

Reads from the same SSD page
Minimize I/O amplification!

- Other transparent optimizations can be hidden

Out-of-order,
Latency-Insensitive

A Library of Optimizations to Hide

❑ Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page

A Library of Optimizations to Hide

❑ Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page

❑ Probabilistic filtering (Done)
o Use bloom filter to avoid storage reads which will return negative results

o e.g., Nonexistent graph edges, Nodes with no outgoing edge

A Library of Optimizations to Hide

❑ Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page

❑ Probabilistic filtering (Done)
o Use bloom filter to avoid storage reads which will return negative results

o e.g., Nonexistent graph edges, Nodes with no outgoing edge

❑ Compression (In Progress)
o Application-specific compression, e.g., LZ4, ZFP, XOR, VarInt

o Reference-based compression

Preliminary Evaluation: Triangle Counting

❑ Counts the number of triangles in a graph

❑ Important application
• One of four benchmarks in MIT/Lincoln Labs GraphChallenge[9]

❑ Involves two neighborhood queries
• For each V,

enumerate permutations of neighbor(V) → (A,B)
check whether B ∈ neighbor(A)

• Bloom filter trained on graph edges
Avoid neighborhood queries for A if edge(A,B) doesn’t exist

[9] https://graphchallenge.mit.edu/challenges

Experimental Setup

❑ State-of-the-art baselines:

• GraphBLAS

• HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)

• A lot more which failed from memory limitations (e.g., Neo4J)

❑ Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU

• + One Samsung SmartSSD for SSD+FPGA

• Our approach only used 4 threads + 4 GB memory

Experimental Setup

❑ State-of-the-art baselines:

• GraphBLAS

• HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)

• A lot more which failed from memory limitations (e.g., Neo4J)

❑ Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU

• + One Samsung SmartSSD for SSD+FPGA

• Our approach only used 4 threads + 4 GB memory
Graph Edge # (Billion)

DARPA 0.44

V1r 0.46

MAWI 0.48

Graph500 1.05

Twitter 1.46

Results: Performance Improvements

Lower is better

Competitive!

Tiny!

Results: Performance Improvements

Lower is better

¼ Cost, Comparable performance

Competitive!

Tiny!

Results: Performance Improvements

Lower is better

¼ Cost, Comparable performance

60% - 95% Bloom filtering rate with 0.5 GB Bloom filter

Competitive!

Tiny!

Results: Performance Improvements

Lower is better

¼ Cost, Comparable performance

60% - 95% Bloom filtering rate with 0.5 GB Bloom filter

Competitive!

Tiny!

Emphasis: Considers whole-system affects (e.g., storage latency, I/O amplification)

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration
Target

Acceleration
Target

Acceleration
Target

Memory
Bottleneck

Goal 1: Graph Construction
and Traversal

Goal 2: “Minimap 2”
For N-to-N genome alignment

What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration
Target

Acceleration
Target

Acceleration
Target

Memory
Bottleneck

Goal 1: Graph Construction
and Traversal

Goal 2: “Minimap 2”
For N-to-N genome alignment

Ongoing Work 2: Alignment Accelerator

❑ Many De Novo tools internally use “Minimap2”
o Input: Reference, reads

o Output: mapping between them

❑ De Novo does not use a reference, reads act also as reference
o Massively increased work: 10x or more!

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

100+ GB memory

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

100+ GB memory Sequential backtracking

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Irregular computation patterns

Large memory requirements

Not readily parallelizable

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Dong e.g. al., mm2-gb

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Many systems focus
on Chaining (not ours)

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Dong e.g. al., mm2-gb

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Many systems focus
on Chaining (not ours)

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Dong e.g. al., mm2-gb

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Many systems focus
on Chaining (not ours)

A100 GPU
As good as 32 Xeon threads…

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Dong e.g. al., mm2-gb

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Many systems focus
on Chaining (not ours)

A100 GPU
As good as 32 Xeon threads…

(FPGA much better!)

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Dong e.g. al., mm2-gb

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Many systems focus
on Chaining (not ours)

A100 GPU
As good as 32 Xeon threads…

Chaining may be 70% of work, (ONT)
or 10% of work (PacBio)

(FPGA much better!)

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Vast majority of memory ~50% of computation

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

• Random-access during hash construction
• Random-access during hash lookup

Vast majority of memory ~50% of computation

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

Vast majority of memory ~50% of computation

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

Vast majority of memory ~50% of computation

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel
• Score matrix: Large

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel
• Score matrix: Large
• Backtracking: Sequential

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel
• Score matrix: Large
• Backtracking: Sequential

• Solution 1: Compress the matrix

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel
• Score matrix: Large
• Backtracking: Sequential

• Solution 1: Compress the matrix

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel
• Score matrix: Large
• Backtracking: Sequential

• Solution 1: Compress the matrix
• Solution 2: Parallel backtracking

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel
• Score matrix: Large
• Backtracking: Sequential

• Solution 1: Compress the matrix
• Solution 2: Parallel backtracking

Goal: Drop-in replacement of Minimap2
1/10 memory, 10x performance

Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…

R
e

fe
re

n
c
e
:
A

C
G

T
…

• Score matrix computation: Parallel
• Score matrix: Large
• Backtracking: Sequential

• Solution 1: Compress the matrix
• Solution 2: Parallel backtracking

Goal: Drop-in replacement of Minimap2
1/10 memory, 10x performance … Stay tuned!

Long-Term Goal:
Precision (“Personalized”) Medicine

Cancer Patient

Analysis!
(Biomarkers, regulators,

antigens,…)

Sequenced
Genome

Future Focus!

Our Efforts So Far…

ISCA 2018 NVM + FPGA vertex-centric graph analytics

Frontiers 2021 NVM Genomic graphs (SMuFin)

PACT 2023 NVM + FPGA Graph Neural Networks

DAC 2024 NVM + FPGA Software-Driven graph analytics

…

FPL 2022 DRAM + FPGA Genomic graphs (De Bruijn)

Our Efforts So Far…

ISCA 2018 NVM + FPGA vertex-centric graph analytics

Frontiers 2021 NVM Genomic graphs (SMuFin)

PACT 2023 NVM + FPGA Graph Neural Networks

DAC 2024 NVM + FPGA Software-Driven graph analytics

…

FPL 2022 DRAM + FPGA Genomic graphs (De Bruijn)

Genome Compression Graph Compression Parallel Backtracking

ARDA is Interested in a LOT of things!

ARDA is Interested in a LOT of things!

❑ Graph Neural Networks

❑ Edge processing – Earthquakes and Wildfires

❑ Edge processing – Smart Agriculture

❑ Processing-In-Memory

❑ Accelerating Program Analysis

❑ Scientific Computing – Symbolic Regression

❑ Oh my!

Students Involved

❑ PhD Se-Min Lim @ UCI
• Scalable Graph Neural Networks with near-storage acceleration

❑ PhD Seongyoung Kang @ UCI
• Scalable Subgraph Isomorphism with near-storage acceleration

• Triangle counting demo being developed
• Plan to present to Samsung collaborators (Xuebin Yao, Reza Soltaniyeh)

❑ PhD Esmerald Aliaj @ UCI
• Compiler support for hardware kernel generation

	Slide 1: System architectures with adaptive accelerators for genomics
	Slide 2: System architectures with adaptive accelerators for genomics
	Slide 3: Working to Bridge the Silos…
	Slide 4: The Usual Doom and Gloom
	Slide 5: The Usual Doom and Gloom
	Slide 6: The Usual Doom and Gloom
	Slide 7: The Usual Doom and Gloom
	Slide 8: But, We Need More Performance!
	Slide 9: Specialization for Performance & Efficiency
	Slide 10: Specialization for Performance & Efficiency
	Slide 11: Specialization for Performance & Efficiency
	Slide 12: But, We Need More Performance!
	Slide 13: But, We Need More Performance!
	Slide 14: But, We Need More Performance!
	Slide 15: But, We Need More Performance!
	Slide 16: GPU Scalability Trend
	Slide 17: GPU Scalability Trend
	Slide 18: GPU Scalability Trend
	Slide 19: GPU Scalability Trend
	Slide 20: GPU Scalability Trend
	Slide 21: GPU Scalability Trend
	Slide 22: GPU Scalability Trend
	Slide 23: An Example: Graph Neural Networks!
	Slide 24: An Example: Graph Neural Networks!
	Slide 25: An Example: Graph Neural Networks!
	Slide 26: An Example: Graph Neural Networks!
	Slide 27: GPU for GCN in practice
	Slide 28: GPU for GCN in practice
	Slide 29: GPU for GCN in practice
	Slide 30: GPU for GCN in practice
	Slide 31: GPU for GCN in practice
	Slide 32: GPU for GCN in practice
	Slide 33: GPU for GCN in practice
	Slide 34: GPU for GCN in practice
	Slide 35: An Example: Graph Neural Networks!
	Slide 36: An Example: Graph Neural Networks!
	Slide 37: An Example: Graph Neural Networks!
	Slide 38: An Example: Graph Neural Networks!
	Slide 39: An Example: Graph Neural Networks!
	Slide 40: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 41: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 42: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 43: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 44: But, We Need More Performance!
	Slide 45: But, We Need More Performance!
	Slide 46: But, We Need More Performance!
	Slide 47: Another Application Target: Precision (“Personalized”) Medicine
	Slide 48: Another Application Target: Precision (“Personalized”) Medicine
	Slide 49: Another Application Target: Precision (“Personalized”) Medicine
	Slide 50: Another Application Target: Precision (“Personalized”) Medicine
	Slide 51: Another Application Target: Precision (“Personalized”) Medicine
	Slide 52: Genome Assembly Methods
	Slide 53: Genome Assembly Methods
	Slide 54: Genome Assembly Methods
	Slide 55: Genome Assembly Methods
	Slide 56: Genome Assembly Methods
	Slide 57: Genome Assembly Methods
	Slide 58: De Novo Assembly for Personalized Medicine
	Slide 59: De Novo Assembly for Personalized Medicine
	Slide 60: De Novo Assembly for Personalized Medicine
	Slide 61: What to accelerate, for De Novo Assembly?
	Slide 62: What to accelerate, for De Novo Assembly?
	Slide 63: What to accelerate, for De Novo Assembly?
	Slide 64: What to accelerate, for De Novo Assembly?
	Slide 65: What to accelerate, for De Novo Assembly?
	Slide 66: What to accelerate, for De Novo Assembly?
	Slide 67: Graph Analytics in De Novo Assembly
	Slide 68: Graph Analytics in De Novo Assembly
	Slide 69: Graph Analytics in De Novo Assembly
	Slide 70: Graph Analytics in De Novo Assembly
	Slide 71: Graph Analytics in De Novo Assembly
	Slide 72: High-Performance Graph Analytics in SSDs
	Slide 73: High-Performance Graph Analytics in SSDs
	Slide 74: High-Performance Graph Analytics in SSDs
	Slide 75: High-Performance Graph Analytics in SSDs
	Slide 76: High-Performance Graph Analytics in SSDs
	Slide 77: Our Solution: Sorting Accesses
	Slide 78: Our Solution: Sorting Accesses
	Slide 79: Our Solution: Sorting Accesses
	Slide 80: Our Solution: Sorting Accesses
	Slide 81: Our Solution: Sorting Accesses
	Slide 82: Our Solution: Sorting Accesses
	Slide 83: Our Solution: Sorting Accesses
	Slide 84: FPGA Radix Sorter
	Slide 85: FPGA Radix Sorter
	Slide 86: FPGA Radix Sorter
	Slide 87: FPGA Radix Sorter
	Slide 88: Common Abstraction for Graph Access
	Slide 89: Common Abstraction for Graph Access
	Slide 90: Common Abstraction for Graph Access
	Slide 91: Common Abstraction for Graph Access
	Slide 92: Common Abstraction for Graph Access
	Slide 93: Common Abstraction for Graph Access
	Slide 94: Common Abstraction for Graph Access
	Slide 95: Common Abstraction for Graph Access
	Slide 96: Common Abstraction for Graph Access
	Slide 97: Common Abstraction for Graph Access
	Slide 98: A Library of Optimizations to Hide
	Slide 99: A Library of Optimizations to Hide
	Slide 100: A Library of Optimizations to Hide
	Slide 101: Preliminary Evaluation: Triangle Counting
	Slide 102: Experimental Setup
	Slide 103: Experimental Setup
	Slide 104: Results: Performance Improvements
	Slide 105: Results: Performance Improvements
	Slide 106: Results: Performance Improvements
	Slide 107: Results: Performance Improvements
	Slide 108: What to accelerate, for De Novo Assembly?
	Slide 109: What to accelerate, for De Novo Assembly?
	Slide 110: Ongoing Work 2: Alignment Accelerator
	Slide 111: Ongoing Work: Alignment Accelerator
	Slide 112: Ongoing Work: Alignment Accelerator
	Slide 113: Ongoing Work: Alignment Accelerator
	Slide 114: Ongoing Work: Alignment Accelerator
	Slide 115: Ongoing Work: Alignment Accelerator
	Slide 116: Ongoing Work: Alignment Accelerator
	Slide 117: Ongoing Work: Alignment Accelerator
	Slide 118: Ongoing Work: Alignment Accelerator
	Slide 119: Ongoing Work: Alignment Accelerator
	Slide 120: Ongoing Work: Alignment Accelerator
	Slide 121: Ongoing Work: Alignment Accelerator
	Slide 122: Ongoing Work: Alignment Accelerator
	Slide 123: Ongoing Work: Alignment Accelerator
	Slide 124: Ongoing Work: Alignment Accelerator
	Slide 125: Ongoing Work: Alignment Accelerator
	Slide 126: Ongoing Work: Alignment Accelerator
	Slide 127: Ongoing Work: Alignment Accelerator
	Slide 128: Ongoing Work: Alignment Accelerator
	Slide 129: Ongoing Work: Alignment Accelerator
	Slide 130: Ongoing Work: Alignment Accelerator
	Slide 131: Ongoing Work: Alignment Accelerator
	Slide 132: Ongoing Work: Alignment Accelerator
	Slide 133: Ongoing Work: Alignment Accelerator
	Slide 134: Ongoing Work: Alignment Accelerator
	Slide 135: Ongoing Work: Alignment Accelerator
	Slide 136: Long-Term Goal: Precision (“Personalized”) Medicine
	Slide 137: Our Efforts So Far…
	Slide 138: Our Efforts So Far…
	Slide 139: ARDA is Interested in a LOT of things!
	Slide 140: ARDA is Interested in a LOT of things!
	Slide 141: Students Involved

