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GPU Scalability Trend

❑ Volta – V100 (2017) – 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o 32 bit tensor: ~112 TFLOPS
o 21B transistors – ~300 W - 815 mm2

❑ Ampere – A100 (2020) – 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!
o 52B transistors – ~300 W - 826 mm2

❑ Hopper – H100 (2022) – 4nm ~$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors – ~300 W - 814 mm2 

❑ Blackwell – B100 (2024) – 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm2 
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What about the rest of us?
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An Example: Graph Neural Networks!

Irregular computation patterns

Irregular memory accesses

Graphs larger than GPU memory

Can FPGAs save us?

Not by itself!
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Quick Plug -- A Whole-System Solution:
Barad-dur [An et. al., PACT 2023]

Not today’s topic…

Repeated discovery:
Algorithm and system architecture must co-optimize with hardware acceleration!



But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes



But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes



But, We Need More Performance!

$0.00

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

$10,000.00

$/
G
B

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Cost/GB of genome data

Trends in ML model sizes

Irregular computation patterns

Large memory requirements

Not readily parallelizable
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Another Application Target: 
Precision (“Personalized”) Medicine

Cancer Patient

Analysis!
(Biomarkers, regulators, 

antigens,…)

Sequenced
Genome

Current Focus!
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De Novo Assembly for 
Personalized Medicine

“However, de novo assembly, particularly of short reads, 
is computationally intense 

and impractical for clinical genome sequencing” [2]

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

“We have been running a single NextDenovo instance
 for 1 year on a 1 TB AWS instance.

We hope it will finish soon”
-- One of our research collaborators

Hurrah! A systems research problem!



What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align 
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align 
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align 
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment



What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align 
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align 
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align 
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration 
Target

Acceleration 
Target

Acceleration 
Target



What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align 
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align 
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align 
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration 
Target

Acceleration 
Target

Acceleration 
Target

Memory
Bottleneck



What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align 
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align 
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align 
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration 
Target

Acceleration 
Target

Acceleration 
Target

Memory
Bottleneck



What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align 
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align 
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align 
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration 
Target

Acceleration 
Target

Acceleration 
Target

Memory
Bottleneck

Goal 1: Graph Construction
and Traversal



What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align 
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align 
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align 
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration 
Target

Acceleration 
Target

Acceleration 
Target

Memory
Bottleneck

Goal 1: Graph Construction
and Traversal

Goal 2: “Minimap 2”
For N-to-N genome alignment
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High-Performance Graph Analytics in SSDs

❑ Slowing DRAM density scaling
❑ Graphs scaling faster than memory can!

❑ SSDs are cheaper… Can we use those instead?

DDR5 NVMe

$3,000/TB $50/TB

200 W/TB <10 W/TB

Unfortunately, they are also slow…

400+ GB/s 10+ GB/s

~10 ns ~10 µs

64 Byte cache lines 8 – 64 KB pages

I/O amplification for random accesses 

Cost/GB of DRAM
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Our Solution: Sorting Accesses

…

Random

Pages

Collect,
Sort

Not Random

But sorting is expensive…?

FPGA acceleration!

[Kang et. al., DAC 2024]
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FPGA Radix Sorter

Software SSD
Random

FPGA
Bursts

Software must issue many non-blocking access requests!
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Common Abstraction for Graph Access

❑ Targeting near-storage acceleration (e.g., SmartSSD)

❑ Key idea: Asynchronous query with callback
• Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin

 … application-specific logic …
end

- Many queries can be in flight at once (>millions)

- Storage access latency can be hidden

- Transparently group accesses to the same page

Requests

Responses

Reads from the same SSD page
Minimize I/O amplification!

- Other transparent optimizations can be hidden

Out-of-order,
Latency-Insensitive
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A Library of Optimizations to Hide

❑ Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page

❑ Probabilistic filtering (Done)
o Use bloom filter to avoid storage reads which will return negative results

o e.g., Nonexistent graph edges, Nodes with no outgoing edge

❑ Compression (In Progress)
o Application-specific compression, e.g., LZ4, ZFP, XOR, VarInt

o Reference-based compression



Preliminary Evaluation: Triangle Counting

❑ Counts the number of triangles in a graph

❑ Important application
• One of four benchmarks in MIT/Lincoln Labs GraphChallenge[9] 

❑ Involves two neighborhood queries
• For each V, 

enumerate permutations of neighbor(V) → (A,B)
check whether B ∈ neighbor(A)

• Bloom filter trained on graph edges
Avoid neighborhood queries for A if edge(A,B) doesn’t exist

[9] https://graphchallenge.mit.edu/challenges
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❑ State-of-the-art baselines: 

• GraphBLAS

• HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)

• A lot more which failed from memory limitations (e.g., Neo4J)

❑ Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU

• + One Samsung SmartSSD for SSD+FPGA

• Our approach only used 4 threads + 4 GB memory
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❑ State-of-the-art baselines: 

• GraphBLAS

• HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)

• A lot more which failed from memory limitations (e.g., Neo4J)

❑ Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU

• + One Samsung SmartSSD for SSD+FPGA

• Our approach only used 4 threads + 4 GB memory
Graph Edge # (Billion)

DARPA 0.44

V1r 0.46

MAWI 0.48

Graph500 1.05

Twitter 1.46
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Results: Performance Improvements

Lower is better

¼ Cost, Comparable performance

60% - 95% Bloom filtering rate with 0.5 GB Bloom filter

Competitive!

Tiny!

Emphasis: Considers whole-system affects (e.g., storage latency, I/O amplification)



What to accelerate, for De Novo Assembly?

Step Mem (GB) Time (s)

Raw_align 
(minimap2)

9 2,203

Sort < 9 176

Next_correct < 9 1,851

Step Mem (GB) Time (s)

Cns_align 
(minimap2)

8 3,907

Ctg_graph < 8 7.8

Ctg_align 
(minimap2)

12 390

Ctg_cns 40 58

Correction

Alignment

Acceleration 
Target

Acceleration 
Target

Acceleration 
Target

Memory
Bottleneck

Goal 1: Graph Construction
and Traversal

Goal 2: “Minimap 2”
For N-to-N genome alignment
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Ongoing Work 2: Alignment Accelerator

❑ Many De Novo tools internally use “Minimap2”
o Input: Reference, reads

o Output: mapping between them

❑ De Novo does not use a reference, reads act also as reference
o Massively increased work: 10x or more!
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Ongoing Work: Alignment Accelerator

Seeding Chaining Alignment

Dong e.g. al., mm2-gb

100+ GB memory Sequential backtrackingStreaming,
High operational intensity

Many systems focus 
on Chaining (not ours) 

A100 GPU
As good as 32 Xeon threads…

Chaining may be 70% of work, (ONT)
or 10% of work (PacBio)

(FPGA much better!)
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Seeding Chaining Alignment

Requests

Responses

Reads from the same SSD page

• Random-access during hash construction
• Random-access during hash lookup

e.g., Kang et. al., “BunchBloomer”, FPL 2022 

• Backtracking needs fast clock (CPU?)
• Score matrix is too large… (PCIe bottleneck!)

Vast majority of memory ~50% of computation

Read: ACGT…
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…

• Score matrix computation: Parallel
• Score matrix: Large
• Backtracking: Sequential

• Solution 1: Compress the matrix
• Solution 2: Parallel backtracking

Goal: Drop-in replacement of Minimap2
1/10 memory, 10x performance … Stay tuned!



Long-Term Goal: 
Precision (“Personalized”) Medicine

Cancer Patient

Analysis!
(Biomarkers, regulators, 

antigens,…)

Sequenced
Genome

Future Focus!



Our Efforts So Far…

ISCA 2018 NVM + FPGA vertex-centric graph analytics

Frontiers 2021 NVM Genomic graphs (SMuFin)

PACT 2023 NVM + FPGA Graph Neural Networks

DAC 2024 NVM + FPGA Software-Driven graph analytics

…

FPL 2022 DRAM + FPGA Genomic graphs (De Bruijn)



Our Efforts So Far…

ISCA 2018 NVM + FPGA vertex-centric graph analytics

Frontiers 2021 NVM Genomic graphs (SMuFin)

PACT 2023 NVM + FPGA Graph Neural Networks

DAC 2024 NVM + FPGA Software-Driven graph analytics

…

FPL 2022 DRAM + FPGA Genomic graphs (De Bruijn)

Genome Compression Graph Compression Parallel Backtracking
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ARDA is Interested in a LOT of things!

❑ Graph Neural Networks

❑ Edge processing – Earthquakes and Wildfires

❑ Edge processing – Smart Agriculture

❑ Processing-In-Memory

❑ Accelerating Program Analysis

❑ Scientific Computing – Symbolic Regression 

❑ Oh my!



Students Involved

❑ PhD Se-Min Lim @ UCI
• Scalable Graph Neural Networks with near-storage acceleration

❑ PhD Seongyoung Kang @ UCI
• Scalable Subgraph Isomorphism with near-storage acceleration

• Triangle counting demo being developed
• Plan to present to Samsung collaborators (Xuebin Yao, Reza Soltaniyeh)

❑ PhD Esmerald Aliaj @ UCI
• Compiler support for hardware kernel generation
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