System architectures
with adaptive accelerators
for genomics

4R
N

Sang-Woo Jun
Assistant Professor, Department of Computer Science

University of California, Irvine

System architectures
with adaptive accelerators
for genomics

4R
N

Sang-Woo Jun
Assistant Professor, Department of Computer Science

University of California, Irvine

Working to Bridge the Silos...

CS Genomics

Photo credit: https://unsplash.com/@ waldemarbrandt67w

The Usual Doom and Gloom

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day — Slide 43

The Usual Doom and Gloom

(Gate cost trend

ates

g
=il
T
o
o

$1.42 $1.43 $1.45 $1.52

=
o
o
—
—
Q
o
ﬁ
o
O

90nm 65nm 45/50nm 28nm 20nm 16/14nm 10nm 7nm

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day — Slide 43

The Usual Doom and Gloom

(Gate cost trend

$1.42 $1.43 $1.45 $1.52

90nm 65nm 45/50nm 28nm 20nm 16/14nm 10nm 7nm

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day — Slide 43

$
o
o
»

(Cores * GHz * IPC) /

0.00 +

o

o

=
L

o

o

N
1

Launch Date

Performance
‘7302P /' 7313P
: 7443P 93§4p
.735 1p 7402P
9454P
% 401P 7so2p 7O%Fe
° 7713P 9554P
7551P Y ® °
L 7702P 9654P
06/2017 08/2019 03/2021 11/2022
Naples Rome Milan Genoa

The Usual Doom and Gloom

(Gate cost trend

$1.42 $1.43 $1.45 $1.52

90nm 65nm 45/50nm 28nm 20nm 16/14nm 10nm 7nm

[3] Database Architects, “The Great CPU Stagnation” 2023
[4] Marvell 2020 Investor day — Slide 43

Performance
7302P M 7313P
2 7443P 9354P
& 0.06 o
= 7351P 7402P
a)\ 7543P a 9454':
»% $10,000
© Cost/GB of DRAM
o
= 0
5 $1,000°
0

$100

$10

$1

2002

2008 2010 2014 2018

But, We Need More Performance!

$10,000.00
$1,000.00

$100.00

Cost/GB of genome data

le+13

let+12

le+1l

le+10

le+9

le+8

Parameters

le+7

le+6

le+5

le+4

. } o)
Trends in ML model sizes %o
o
00
o0-®
S 00
o2 %éo;
o) &0
(] o O OQ;;O QD
oo%o(?%@ %@
- c?d@O o
_© o o &g%gaqﬁ’o
o o S _ o oc@?/%cfaj &
@] ro -=0° @5 o 0 o
(@) _1}301\“5—"\‘-?3’ -
= = 922 o0 08 =
Oty DO oo 3 ©
o- o O o) o o
(@] S e o
C o
o
o

06 2008 2010 2012 2014 2016 2018 2020 2022

Publication date

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Specialization for Performance & Efficiency

! ASIC
More |

efficient

CPU

More general

Specialization for Performance & Efficiency

! ASIC
More |
efficient

! FPGA

GPU (CUDA)

CPU

More general

Specialization for Performance & Efficiency

! ASIC
More |

efficient

GPU (Tensor)

CPU

More general

But, We Need More Performance!

$10,000.00
$1,000.00

$100.00

Cost/GB of genome data

le+13

let+12

le+1l

le+10

le+9

le+8

Parameters

le+7

le+6

le+5

le+4

. } o)
Trends in ML model sizes %o
o
00
o0-®
S 00
o2 %éo;
o) &0
(] o O OQ;;O QD
oo%o(?%@ %@
- c?d@O o
_© o o &g%gaqﬁ’o
o o S _ o oc@?/%cfaj &
@] ro -=0° @5 o 0 o
(@) _1}301\“5—"\‘-?3’ -
= = 922 o0 08 =
Oty DO oo 3 ©
o- o O o) o o
(@] S e o
C o
o
o

06 2008 2010 2012 2014 2016 2018 2020 2022

Publication date

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

We Need More Performance!

But

9 O
e . AR
-— “
w .”” . y
-~ : o
S ey -
1 .a‘. Yo
~
4
CALARAAAL AR RS
B A A A A A A A A A A A
EAEEEEEEEEEEEEEA
ro =
o.”.. | Q-
© o, o
oy o ..".”...”...”... <
Q. > o...........“....
e 1 iy -”.....
o A XX AXIAXS 2
=“... =~
M » SRR Y OO0
) S : OO0
X0 o .
() =
TR G
+ +
LhRRARRAS
AR AR ALY
BRARRARN
VARARRRRARS
© - Z
© on
o c
=
= %
S c
(o]0}
5 - 4,
m an
O
S~
@ -9
(@]
O QQnV
- Z,
o
O O O o o o « o @
S & & & & = 9o S
o o o o — o o o
o o o — A A A A
o
e = 49/$
e

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

But, We Need More Performance!

H100 FP16

A100 FP16

ARRARRRwN
BRARRRARN
ARRRRRARS

Cost/GB of genome data

$10,000.00

$1,000.00

$100.00

$0.10
$0.01

$0.00

https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

But, We Need More Pirformance!

Cost/GB of genome data NVIDIA, with no solid Competition, is out here
1 . competing against Moore's Law instead.
$10,000.00 P g ag
$1,000.00 20000 TFLOPS
FP4
$100.00 :

o $10.
g s100° . <,
& N

$1.00 I

$0.10

$0.01 4000 TFLOPS i

. | FP8
$0.00 | T T T T & Volta ngn;ﬁfgaps Moore’s Law
Q\ Q% '\,\ \@ "]:\ = 19 TFLOPS '3°FTPFILGOPS i
FP16
PSS S S

o
https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

GPU Scalability Trend

d

Volta— V100 (2017) — 12nm ~$10,000 at release
o 32 bit CUDA: ~14 TFLOPS

o 32 bit tensor: ~112 TFLOPS

o 21B transistors —~300 W - 815 mm?

Ampere — A100 (2020) — 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS

o 32 bit tensor: ~156 TFLOPS *TF32 != FP32!

o 52B transistors —~300 W - 826 mm?

Hopper — H100 (2022) — 4nm ~5$25,000 at release

o 32 bit CUDA: ~67 TFLOPS

o 32 bit tensor: ~400 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 80B transistors —~300 W - 814 mm?

Blackwell — B100 (2024) — 4nm ~$35,000 at release

o 32 bit CUDA: ~60 TFLOPS

o 32 bit tensor: ~900 TFLOPS (higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm?

GPU Scalability Trend

O Volta—V100 (2017) — 12nm ~5$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o | 32 bit tensor: ~112 TFLOPS
o 21B transistors —~300 W - 815 mm?

d Ampere — A100 (2020) — 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o | 32 bit tensor: ~156 TFLOPS [*TF32 != FP32!
o 52B transistors —~300 W - 826 mm?

O Hopper—-H100 (2022) — 4nm ~5$25,000 at release
o 32 bit CUDA: ~67 TFLOPS
o | 32 bit tensor: ~400 TFLOPS |(higher with sparsity support) *TF32 != FP32!
o 80B transistors —~300 W - 814 mm?

O Blackwell — B100 (2024) — 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o | 32 bit tensor: ~900 TFLOPS |(higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm?*

GPU Scalability Trend

O Volta—V100 (2017) — 12nm ~5$10,000 at release
o 32 bit CUDA: ~14 TFLOPS
o | 32 bit tensor: ~112 TFLOPS
o 21B transistors —~300 W - 815 mm?

d Ampere — A100 (2020) — 7nm ~$10,000 at release
o 32 bit CUDA: ~19.5 TFLOPS
o | 32 bit tensor: ~156 TFLOPS [*TF32 != FP32!
o 52B transistors —~300 W - 826 mm?

O Hopper—H100 (2022) —4nm ~5$25,000 at release
o 32 bit CUDA: ~67 TFLOPS -
o | 32 bit tensor: ~400 TFLOPS |(higher with sparsity support) *TF32 != FP32!
o 80B transistors —~300 W - 814 mm?

O Blackwell — B100 (2024) — 4nm ~$35,000 at release
o 32 bit CUDA: ~60 TFLOPS
o | 32 bit tensor: ~900 TFLOPS |(higher with sparsity support) *TF32 != FP32!
o 208B transistors - ?? mm?*

GPU Scalability Trend

1000 32 bit float scali
| Oat SCalln
900 8 It release
300
700
v 600
Q 500 | at release
~ 400
300 |
200
100 at release
0 —
i * = |
@ e & N yarsity support) *TF32 I= FP32!
& &
((\ \2\0 @
N N 0 at release
—Cuda Tensor32 yarsity support) *TF32 |= FP32!

O ZYUOD LIdIIDIDWUIS = T D i

GPU Scalabill

TFLOPS

1000
900
800
700
600
500
400
300
200
100

ity Trend

32 bit float scaling
=TT
2 e < AN
& ¢ &
S SO

—~Cuda —Tensor32

O ZYUOD LIdIIDIDWUIS = T D i

(g})

)d

)d

30

TFLOPS/1,000$
,ON N
TR = S O

=
o

32 bit float scaling/S

__-H

Volta Ampere Hopper Blackwell
—CUDA/S —Tensor32/S

GPU Scalability Trend

NVIDIA, with no solid competition, is out here 30
competing against Moore's Law instead. 32 bit float scaling/$

NI
(Up)

Blackwell
20,000 TFLOPS
FP4

N
o

<

TFLOPS/1,000S
=
i

=
o

Hopper 5
4,000 TFLOPS
FP8

Ampere

o 620 TFLOPS ‘ 0
Pascal ora FP16 Moore's Law

130 TFLOPS

W pes FP16 Volta Ampere Hopper Blackwell

CUDA/S Tensor32/S

O £LZUOD LIdIIDIDLUID = T 0 11t

GPU Scalability Trend

NVIDIA, with no solid competition, is out here 30
competing against Moore's Law instead. 32 bit float scaling/$

NI
(Up)

Blackwell
20,000 TFLOPS
FP4

N
o

S

=
o

TFLOPS/1,000S
=
i

Hopper 5
4,000 TFLOPS
FP8

Ampere 0

620 TFLOPS ,
Pascal Volta FP16 Moore's Law

130 TFLOPS

W pes FP16 Volta Ampere Hopper Blackwell

CUDA/S Tensor32/S

O £LZUOD LIdIIDIDLUID = T 0 11t

What about the rest of us?

N e TR

o

An Example: Graph Neural Networks!

3 et - . .. LAl
An Example: Graph Neural Networks!

S

‘ o.. ’ Pf‘ - : . f '~ X L .‘. . 7
Irregular computatlon patterns 5" i :

‘_ Xl

3 et - . .. LAl
An Example: Graph Neural Networks!

S

~_: 3 é,‘ \.‘r\—-.-ﬁ : ,1"-’ .\\-? - . >
- . \.. .a ,--E . - »
\\ IrregUIar Computat|0n patterns . I \

N -4 Bai . 3 T\
- %y Irregular memory accesses ig
d "’.*.'T;. »i .

~ Ax e h T & (X718 '
6 bR RN G LR

y ‘e

T et lad . . LA L
An Example: Graph Neural Networks!

-
s A
wat a B .
. N - 2 4 - .
.." : B

» . \°" OA
<3 Irregular computatlon patterns

i Badle. 3 LY

> Irregular memory accesses §

Graphs Iarger than GPU memory % | R 4

. f
-“-' ' '.. - ‘
- L AN Y - y s -

;I ‘\ - .*". -
oy P an wCRDISS,
,ﬁ‘., : - 3 -

. ‘ ‘

"“,

-

-
-y
0(.

0N

GPU for GCN in practice

GFLOPS

120

100

80

60

40

20

0.5

1 1.5
Graph Size (Billion Edges)

2.5

GPU for GCN in practice

GFLOPS

120

100

80

60

40

20

0.5

1 1.5
Graph Size (Billion Edges)

2.5

GPU for GCN in practice

GFLOPS

120

100

80

60

40

20

0.5

1 1.5
Graph Size (Billion Edges)

2.5

GPU for GCN in practice

GFLOPS

120

100

80

60

40

20

0.5

—&

1 1.5
Graph Size (Billion Edges)

2.5

GPU for GCN in practice

GFLOPS

120

100

80

60

40

20

0.5

——

1 1.5
Graph Size (Billion Edges)

2.5

GPU for GCN in practice

GFLOPS

120

100

80

60

40

20

0.5

1 1.5
Graph Size (Billion Edges)

GPU for GCN in practice

GFLOPS

120

100

80

60

40

20

0.5 1 1.5 2
Graph Size (Billion Edges)

Isn’t GPU throughput supposed to be a multi-TFLOP?

GPU for GCN in practice

100%
120 80%
60%
100 10%
20%
» 80 0o,
§ 60 Reddit Amazon Kr34 Kred Twitter
C eAGPU% [CICPU% -#-Batch%
40
20
’ PN
0 0.5 1 1.5 2 25

Graph Size (Billion Edges)

Isn’t GPU throughput supposed to be a multi-TFLOP?

T et lad . . LA L
An Example: Graph Neural Networks!

-~

‘ .
S

.

Irregular computatlon patterns

i Badle. 3 LY

> Irregular memory accesses §

Graphs Iarger than GPU memory %

vm

-

"“,

-

-
-y
0(.

r..~

-
.

. -
. /‘ o .“
e ¥ -
o~ .

N e TC B S

An Example: Graph Neural Networks!

‘ .
Q_. .

.

A Irregularcomputatlon patterns [ESiil S | I
£ ._ . ~
o s —— el O .kr". e o,
.‘. ‘(,
: . . '
-

.,(' i Irregular memory accesses |

- \
e O.f' L -
.

:'. o SR TR ,
cﬂ‘d Graphs Iarger than GPU memory | :

»
~ ™

- -

e .*‘_ . M\ -

Can FPGAs save us?

N e TC B S

An Example: Graph Neural Networks!

s
_—

£3% < Irregular computatlon patterns [ESiil S | I
A s —— el AL .Kr—c — oy
.‘. : (
| ar : '
P

.,(' i Irregular memory accesses |

- \
e O.f' L -
.

:'. o SR TR ,
cﬂ‘d Graphs Iarger than GPU memory | :

»
~ ™

- -

e .*‘_ . M\ -

Can FPGAs save us?

T et lad . . LA L
An Example: Graph Neural Networks!

s
=S

-~

4 ‘,’ ~Irregular computatlon patterns :

L.y BNl 3 LY
Irregular memory accesses §

vm

L - -

Y .*‘_ . M\ -

Can FPGAs save us?

T et lad . . LA L
An Example: Graph Neural Networks!

s
=S

-~

' B bkl
98— Irregular computation patterns ?
A'"/.' — vi- & Bl . & T\ Y - g » ey {..f

,,(' Irregular memory accesses
.
o

gy g Graphslarger than GPU memory %

- ; P . e’ ~
. . -' o 8 : y] . v‘
. .

L - -

R Wl L

Can FPGAs save us?

Not by itself!

Quick Plug -- A Whole-System Solution:
Barad_dur [An et. al., PACT 2023]

Computational Storage

Host “ VC707 BlueDBM Card
Server (sPMM) | | BlueDBM Card
2
VC707 BlueDBM Card
(dMM) | [glueDBM Card
PCle
(3.1 GB/s) 4.8 GB/s over 4 cards

GFLOPS

100

10

0.1

0

-+-\/100

| Reddit i Amazon

Kron23/32 Kron23/64 | | -4-CPUx1?2
<1} Barad-dur

Near-storage

0.5

1 1.5 2 2.5
Graph Size (Billion Edges)

Quick Plug -- A Whole-System Solution:

Barad-dur [An et al, PACT 2023]

Computational Storage

‘ 100
| A+ | PR | (Viawlat, | | BIUGDBM Card --\/100
R — Kron23/32 | | Kron23/64 | [-A-CPUx12
P g I'-,I Ca rd 10
/ 4 4} Barad-dur
S \\ Accelerator o
/ S) \ On-chip BRAM o
y, . ~ \ \ G
y @ﬂl@]ﬂ]ﬂ]ﬂ‘@ Near-storage_
,-/ .;.;,// J/. /// /// -’/ :M‘\\\IHH j . : 1 I
117/ W |G-
\|\ T @IIIIIIIIIIIIIIII S 0.1
[| | | ID) . 1‘1; Nl'WaY Bursting \ 0 0.5 1 1.5 2 2-5
N NN Radix sorter Graph Size (Billion Edges
ED:-I:I IS 4 p (ges)
> | Log,(G)
I
Column-sorted Pages RS 07 105,Ny) | Log,(N,) | Log,R)
|

Sparse A of X

O |

Log,(N)

Quick Plug -- A Whole-System Solution:

Barad-dur [An et al, PACT 2023]

Computational Storage

‘ 100
| A+ | PR | (Viawlat, | | BIUGDBM Card --\/100
R e Kron23/32 | | Kron23/64 | [-A-CPUx12
s \ Card 10
d 4 4 Barad-dur
S \\ Accelerator o
/ S) \ On-chip BRAM o
y, . ~ \ \ G
, @ﬂlﬁ]]]]]]]]]}@ Near-storage_
,-/ .;.;,// J/. /// /// -’/ :M‘\\\IHH j : : 1 .4,
117/ W |G-
\|\ T @IIIIIIIIIIIIIIII S 0.1
[| | | ,D L "ll Nl_way Bursting N 0 0.5 1 1.5 2 2.5
R NN . Radix sorter Graph Size (Billion Edges
0O MmN 4 p (ges)
g | Log,(G)
[
Column-sorted Pages Rc i (ogn) [LogaiN | Log,R Not today’s topic...
|

Sparse A of X

O |

Log,(N)

Quick Plug -- A Whole-System Solution:

Barad-dur [An et al, PACT 2023]

Computational Storage

| (I P | : ‘l Yawlaki || BlueDBM Card

I
Card

Accelerator
On-chip BRAM

G M-

GFLOPS

100

10

| V_,_\
Boddit

-+-\/100

Kron23/32 Kron23/64 | | -4-CPUx1?2
<1} Barad-dur

Near-storage

Repeated discovery:
Algorithm and system architecture must co-optimize with hardware acceleration!

P

Column-sorted Pages
Sparse A of X

Log,(G)

Rc Ui

Log,(N,)

Log,(N,)

Log,(R)

O |

Log,(N)

Not today’s topic...

But, We Need More Pirformance!

Cost/GB of genome data NVIDIA, with no solid Competition, is out here
1 . competing against Moore's Law instead.
$10,000.00 P g ag
$1,000.00 20000 TFLOPS
FP4
$100.00 :

o $10.
g s100° . <,
& N

$1.00 I

$0.10

$0.01 4000 TFLOPS i

. | FP8
$0.00 | T T T T & Volta ngn;ﬁfgaps Moore’s Law
Q\ Q% '\,\ \@ "]:\ = 19 TFLOPS '3°FTPFILGOPS i
FP16
PSS S S

o
https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

But, We Need More Performance!

4 Cost/GB of genome data) NVIDIA, with no solid competition, is out here
$10,000.00 competing against Moore's Law instead.
$1,000.00 20,000 TFLOPS
FP4
$100.00
mn $10.
& $10.00 .
> .::
$1.00 i
$0.10
$0.01 4000 TFLOPS "
’ : FP8
$O . 0 O [I I I I Volta ngn;gfgaps Moore’s Law
N o N o N : IQPTaFS Lc(ajlps ! 3°FLFIL6°"5 £
Q Q N N Q) FP16
D N NS
_ J

o
https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

But, We Need More Performance!

FP16

4 Cost/GB of genome data) NVIDIA, with no solid competition, is out here
competing against Moore's Law instead.
$10,000.00 P g adg
$1,000.00 2000 TELDeE
FP4
Irregular computation patterns
m P N aWaVa) \
{S\Z Large memory requirements
$T1.0U0 \ =E§
Not readily parallelizable
$O 01 M 4,0(?(???5(()535 .=:
. : FP8
$O . 0 O [I I I Volta ngn;gfgaps Moore’s Law
N o N : IQPTaFS Lc(ajlps ! 3°FLFILGOPS £
N N Sy

o
https://epoch.ai/blog/machine-learning-model-sizes-and-the-parameter-gap

Another Application Target:
Precision ("Personalized”) Medicine

Cancer Patient

Another Application Target:
Precision ("Personalized”) Medicine

Cancer Patient Sequenced

Genome

Another Application Target:
Precision ("Personalized”) Medicine

Analysis!
(Biomarkers, regulators,
antigens,...)

Cancer Patient Sequenced

Genome

Another Application Target:
Precision ("Personalized”) Medicine

Analysis!
(Biomarkers, regulators,
antigens,...)

Cancer Patient Sequenced
Genome

Another Application Target:
Precision ("Personalized”) Medicine

Current Focus! [

Analysis!
(Biomarkers, regulators,
antigens,...)

Cancer Patient Sequenced
Genome

Genome Assembly Methods

Long read \‘\
samples /
Ny /

Genome Assembly Methods

Long read \s\
samples /
Ny /

Pre-assembled reference
-
I
— —

Reference-Based Assembly

Genome Assembly Methods

Long read \s\
samples /
Ny /

Pre-assembled reference

[

Reference-Based Assembly De-Novo Assembly

Genome Assembly Methods

Long read \s\
samples /
Ny /

[1][2](3]

TGC -
Pre-assembled reference »’\7"1(' @ GCyq

‘ AT Cr
I I L (?.-\‘I'Tum ; 3 = ml(TA
— O)
I] “ AC AG
Reference-Based Assembly De-Novo Assembly

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.
[3] Meyn, Stephen. “A critical tool for human genomics and precision medicine: De novo human genome assembly.” University of Wisconsin—Madison Research Blog

Genome Assembly Methods

Long read \‘\
samples /
Ny /

[1][2](3]

o TGC .
Pre-assembled reference oo @ GCa
A'l'\ /(‘.'l'
('.-\‘I'T(nn 2l ”’l‘ TA
I CA~G | TA
I N - N S - AC AG
Reference-Based Assembly De-Novo Assembly

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

[3] Meyn, Stephen. “A critical tool for human genomics and precision medicine: De novo human genome assembly.” University of Wisconsin—Madison Research Blog

Genome Assembly Methods

p
Long read s \‘\
samples /
Ny /

[1][2](3]

Pre-assembled reference

[

CT

— "l'l,\ |
— 3o
N
Reference-Based Assembly = De-Novo Assembly

[1] Chaisson, Mark JP, Richard K. Wilson, and Evan E. Eichler. "Genetic variation and the de novo assembly of human genomes." Nature Reviews Genetics 16.11 (2015): 627-640.

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

[3] Meyn, Stephen. “A critical tool for human genomics and precision medicine: De novo human genome assembly.” University of Wisconsin—Madison Research Blog

De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense
and impractical for clinical genome sequencing” 2

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense
and impractical for clinical genome sequencing” 2

“We have been running a single NextDenovo instance
for 1 yearona 1 TB AWS instance.
We hope it will finish soon”
-- One of our research collaborators

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

De Novo Assembly for
Personalized Medicine

“However, de novo assembly, particularly of short reads,
is computationally intense
and impractical for clinical genome sequencing” 2

“We have been running a single NextDenovo instance
for 1 yearona 1 TB AWS instance.
We hope it will finish soon”
-- One of our research collaborators

Hurrah! A systems research problem!

[2] Ashley, Euan A. "Towards precision medicine." Nature Reviews Genetics 17.9 (2016): 507-522.

What to accelerate, for De Novo Assembly?

Correction

Raw_align
(minimap?2)

Sort

Next_correct
Alignment

Cns_align
(minimap?2)

Ctg_graph

Ctg_align
(minimap?2)

Ctg _cns

<9
<9

<8
12

40

2,203

176
1,851

3,907

7.8
390

58

What to accelerate, for De Novo Assembly?

Correction
Acceleration Raw_align 9 2,203
Target .
(minimap2)
Sort <9 176
Acceleration \Next correct <9 1,851
Target :
Alignment
Acceleration Cns_align) 3,907
Target ..
(minimap?2)
Ctg_graph <8 7.8
Ctg_align 12 390
(minimap?2)

Ctg _cns 40 58

What to accelerate, for De Novo Assembly?

Correction
Acceleration Raw_align 9 2,203
Target .
(minimap2)
Sort <9 176
Acceleration \Next correct <9 1,851
Target :
Alignment
Acceleration Cns_align 8 3,907
Target ..
(minimap?2)
Ctg_graph <8 7.8
Ctg_align 12 390
(minimap?2)
Memory
Bottleneck Ctg_cns 40 >8

What to accelerate, for De Novo Assembly?

Acceleration
Target

Acceleration
Target

Acceleration
Target

N\
Memory

Bottleneck

What to accelerate, for De Novo Assembly?

Acceleration
Target

Acceleration
Target

Acceleration
Target

Goal 1: Graph Construction N

and Traversal Memory
Bottleneck

What to accelerate, for De Novo Assembly?

Acceleration
Goal 2: “Minimap 2” Target

For N-to-N genome alignment

Acceleration
Target

Acceleration

Target
4 N
Goal 1: Graph Construction N
and Traversal Memory
. y Bottleneck

Graph Analytics in De Novo Assembly

[Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphes, ...

Unknown e
genome |SP°2 ey
_El | — | i | J——)
H —_— H -
E;:E w . . J——
» ! : ' : -

Owverlap graph j caqteaac
i De Bruijn graph agtcage
|] cagttogy
~——__tcaa caac

- agbc gho ftn:aq n:aqt. @
\M g o jj'. “_agtt qtte theg togg

|1
p— _-' I
'String graph
i o r; M
. , ! -, ———uf
Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing. i -”r;_. v, il
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402 ; 0 £

Graph Analytics in De Novo Assembly

[Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphes, ...

o Quite large!

* +500 GB for Human Unknown
. : genome 1oPed! Fopae
* TBs for some plants (Pine, Onion, ...) 2 gy ; o w—
Owverlap graph e

ajgbcagt

De Bruijn graph

.('. .\‘ cagttogy
“/.' Yoy ———___tcaa caac
;’ - aJtc ghoa toag cagh 9
\ ,\’ ! rigii o :j’\aqtt gtte tteg togg
_ .. E i "-._____.-"
s e
'String graph
. @ rs ;'
", _—

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing. ! ..f’rz ry 8

Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

Graph Analytics in De Novo Assembly

[Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphes, ...

o Quite large!
. Unknown
+500 GB for Human GanEiTe fln_apiaf': | | it

* TBs for some plants (Pine, Onion, ...)
o Vertices are small (few bytes)

| P— | i 4
H —_— H .
3 1 — —_—

Reads

) - : 1
g i 1
» ! " ! £

L ";I' t- CAmC

De Bruijn graph agtcage
] c':-‘ffl: togy

agqtc qtn" tuaq n"aqt

\;g \’ S _,:!\Haqtt gtte ttog togg

~—— o—0 -0 -0

Owverlap graph

iString graph
i o r; M
. , -, ———uf
Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing. i -”r;_. v, il
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402 ; 0 £

Graph Analytics in De Novo Assembly

[Big source of scalability concerns: Handling graphs
o Overlap graphs, De Bruijn Graphs, String Graphes, ...

o Quite large!
LInknown

* +500 GB for Human
_ . genome 'ﬁf Ea‘_af 'I:‘? Ee;ﬂlt
* TBs for some plants (Pine, Onion, ...) ® P E— ; pp—
o Vertices are small (few bytes) & J AV B —>
O Construct, then traverse Overlap graph ppry———

' De Bruijn graph agtcage

.(' .\b) cagttogg
.‘/.' § . bCcaa caac

agqtc qtn" tuaq n"aqtl'-' Q

\;g \’ Sy _,:!\Haqtt gtte ttog togg

— o—0 -0 -0

iString graph
i o r; M
. , ! -, ———uf
Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing. i -”r;_. v, il
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402 ; 0 £

Graph Analytics in De Novo Assembly

[Big source of scalability concerns: Handling graphs

o Overlap graphs, De Bruijn Graphs, String Graphes, ...
o Quite large!

e +500 GB for Human UQ'L“::’I}:: Repeal Repeat
* TBs for some plants (Pine, Onion, ...) ® — ; —
o [. >
. L = I - : : : —_—— _
o Vertices are small (few bytes) &2 2N g —>
O Construct, then traverse Overlap graph ppry———

Irregular computation patterns

Not readily parallelizable

Kalyanaraman, A. (2011). Genome Assembly. In: Padua, D. (eds) Encyclopedia of Parallel Computing.
Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_402

A

Large memory requirements \}R\,;_‘;

' De Bruijn graph

agtc qtn

iString graph

."\-\.__

e

."’Fl-
g 2

-ﬁqtﬂ?ﬁqt
cagttogy
DCaa caac

tuaq n"aqt 1'-' .

E

_,:!\Haqtt qtte thog togg
9 o 0 0

e

Iy

e

High-Performance Graph Analytics in SSDs

DRAM is Not Scaling

0 Slowing DRAM density scaling
Q Graphs scaling faster than memory can!

a SSDs are cheaper... Can we use those instead?

Phase 3 oy e

$10,000

$1,000 %

$100

$10

$1

2002

2008

2010

2014

2018

High-Performance Graph Analytics in SSDs

DRAM is Not Scaling
0 Slowing DRAM density scaling Phase 3 S
Q Graphs scaling faster than memory can!

Phase 2
Densrty ncreass

a SSDs are cheaper... Can we use those instead?

° ° ’;" 64Mb
DDR5 |DRAM NVMe | SSD oo
[T T ’4"4M|:}
/Mb
$3,000/TB $50/TB -
200 W/TB <10 W/TB

$10,000

$1,000 %

$100

$10

$1

2002 2008 2010 2014 2018

High-Performance Graph Analytics in SSDs

DRAM is Not Scaling

0 Slowing DRAM density scaling
Q Graphs scaling faster than memory can!

a SSDs are cheaper... Can we use those instead?

o o
DDR5 [DRAM NVMe | SSD
N0 ERDDEED EHNO
$3,000/TB $50/TB
200 W/TB <10 W/TB

Unfortunately, they are also slow...

Phase 3 oy e

$10,000

$1,000 %

$100

$10

$1

2002

2008

2010

2014

2018

High-Performance Graph Analytics in SSDs

DRAM is Not Scaling

0 Slowing DRAM density scaling Phase 3 g
Q Graphs scaling faster than memory can!

a SSDs are cheaper... Can we use those instead?

(-] [
DDR5 [IPRAM NvMe | SSD
$3,000/TB $50/TB
200 W/TB <10 W/TB
Unfortunately, they are also slow... $10.000
400+ GB/s 10+ GB/s \
$1,000 %
~10 ns ~10 us
. $100
64 Byte cache lines 8 — 64 KB pages

$10

$1

2002 2008 2010 2014 2018

High-Performance Graph Analytics in SSDs

DRAM is Not Scaling

a0 Slowing DRAM density scaling Phase 3 ogirmeee
Q Graphs scaling faster than memory can!

a SSDs are cheaper... Can we use those instead?

o o
DDR5 |IDRAM NVMe | SSD
$3,000/TB $50/TB
200 W/TB <10 W/TB
Unfortunately, they are also slow... $10.000
400+ GB/s 10+ GB/s ~
$1,000 “%
~10 ns ~10 us
: $100
64 Byte cache lines 8 — 64 KB pages
/0 amplification for random accesses & $10
$1
2002 2008 2010 2014 2018

Our Solution: Sorting Accesses [kanget.al., bAC2024]

T

Our Solution: Sorting Accesses [kanget.al., bAC2024]

HEE EN Pages
E& N

T

Our Solution: Sorting Accesses [kanget.al., bAC2024]

HEE EN Pages
E& N

Collect,

W

T

Our Solution: Sorting Accesses [kanget.al., bAC2024]

HEE EN Pages
(T
= Random
Collect, HEE
W

Our Solution: Sorting Accesses [kanget.al., bAC2024]

HEE EN Pages
E& n
(Ll
= Random
Collect, [T 1
W
HE" EE EE= BN
V§§§§§§§§§§\s§§ﬂ Not Random

Our Solution: Sorting Accesses [kanget.al., bAC2024]

EEE EN Pages

e

[

o Random

Collect, LD
~__Sort_—

But sorting is expensive...?
HET EN NN BN

Q§§§§§§§§§§\\§§H Not Random

Our Solution: Sorting Accesses [kanget.al., bAC2024]

Collect,

~__Sort_—
But sorting is expensive...?

HET EN NN BN FPGA acceleration!
Not Random

Random

Tk

FPGA Radix Sorter

Software

Random

2

SSD

FPGA Radix Sorter

Random

Software I

FPGA

Bursts

SSD

FPGA Radix Sorter

Random Bursts

Software |INNENNNEN FPGA | SSD

Accelerator DRAM Accelerator
~On-chip BRAM

@Mmmm—@ 3 Vs @immmm—@

Pages of X

?
T

<value*T>

Accelerator Hardware

RIS () el) GO

L1 Sorter L2 Sorter +
J +PEs + PEs . | N,-way Bursting N, Buckets N,-way Bursting
Grouped i % " i Radix sorter in DRAM Radix sorter
Rows in A E DRAM GrOL.‘lp i
E Buckets PSaurr:aSI E LOgZ(G)
Soft | Hard | cof W/////////ﬁ Log,(N,) | Log,(N,) | Log,(R)
oftware ardware o) |

| Log,(N)

FPGA Radix Sorter

Pages of X

i)

Random Bursts
Software |INNENNNEN FPGA | SSD
. Accelerator DRAM Accelerator
~On-chip BRAM
<value*T> | QMG 8 MB GO
Accelerator Hardware i W 8 MB @m&
L1 Sorter L2 Sorter } B I ES & 8 MB & 9
+
+ PEs + PEs + l I N,-way Bursting N, Buckets N,-way Bursting

Software must issue many non-blocking access requests!

IIIIIIII L) ; DRm .' :
: Buckets :art'al ! Log,(G)
: ums |
o — e)] e
oftware ardware oft |
|

Log,(N)

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

0 Key idea: Asynchronous query with callback
- Programmer-specified callback function called when data is ready

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

0 Key idea: Asynchronous query with callback
Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...
end

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

Out-of-order,

0 Key idea: Asynchronous query with callback Latency-Insensitive
Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...
end

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

Out-of-order,

0 Key idea: Asynchronous query with callback Latency-Insensitive
Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)
function myCallback(src, dst[]) begin

... application-specific logic ...
end

- Many queries can be in flight at once (>millions)

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

Out-of-order,

0 Key idea: Asynchronous query with callback Latency-Insensitive
- Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...

end
Requests

- Many queries can be in flight at once (>millions) Responses

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

Out-of-order,

0 Key idea: Asynchronous query with callback Latency-Insensitive
- Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...

end
Requests

- Many queries can be in flight at once (>millions) Responses

- Storage access latency can be hidden

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

Out-of-order,

0 Key idea: Asynchronous query with callback Latency-Insensitive
- Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...

end
Requests

- Many queries can be in flight at once (>millions) Responses
- Storage access latency can be hidden

- Transparently group accesses to the same page

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

0 Key idea: Asynchronous query with callback
- Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...
end

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden

- Transparently group accesses to the same page

Out-of-order,
Latency-Insensitive

Requests

v

Responses

/N v

»
»

Reads from the same SSD page

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

0 Key idea: Asynchronous query with callback
- Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...
end

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden
- Transparently group accesses to the same page

Minimize I/O amplification!

Out-of-order,
Latency-Insensitive

Requests

v

Responses

/N v

»
»

Reads from the same SSD page

Common Abstraction for Graph Access

] Targeting near-storage acceleration (e.g., SmartSSD)

0 Key idea: Asynchronous query with callback
- Programmer-specified callback function called when data is ready

foreach vertex.getNeighbors(callback=myCallback)

function myCallback(src, dst[]) begin
... application-specific logic ...
end

- Many queries can be in flight at once (>millions)
- Storage access latency can be hidden
- Transparently group accesses to the same page

Minimize I/O amplification!

- Other transparent optimizations can be hidden

Out-of-order,
Latency-Insensitive

Requests

v

Responses

/N v

»
»

Reads from the same SSD page

A Library of Optimizations to Hide

J Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page

A Library of Optimizations to Hide

J Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page
d Probabilistic filtering (Done)

o Use bloom filter to avoid storage reads which will return negative results
o e.g., Nonexistent graph edges, Nodes with no outgoing edge

A Library of Optimizations to Hide

J Access re-organization (Done)
o Burst-sorting accelerator to group accesses to the same page

d Probabilistic filtering (Done)
o Use bloom filter to avoid storage reads which will return negative results
o e.g., Nonexistent graph edges, Nodes with no outgoing edge

(1 Compression (In Progress)

o Application-specific compression, e.g., LZ4, ZFP, XOR, Varlnt
o Reference-based compression

Preliminary Evaluation: Triangle Counting

0 Counts the number of triangles in a graph

0 Important application
One of four benchmarks in MIT/Lincoln Labs GraphChallenge!®!

0 Involves two neighborhood queries

ForeachV,
enumerate permutations of neighbor(V) - (A,B)

check whether B € neighbor(A)

- Bloom filter trained on graph edges
Avoid neighborhood queries for A if edge(A,B) doesn’t exist

[9] https://graphchallenge.mit.edu/challenges

Experimental Setup

0 State-of-the-art baselines:
- GraphBLAS
HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)
- A lot more which failed from memory limitations (e.g., Neo4))
a Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU
- + 0One Samsung SmartSSD for SSD+FPGA

« Our approach only used 4 threads + 4 GB memory

Experimental Setup

O State-of-the-art baselines:
GraphBLAS

HPEC graph challenge champions: Karypis (CPU), TRUST (GPU)

A lot more which failed from memory limitations (e.g., Neo4))

a Dell T640 server w/ 24-Core Xeon Gold and 200 GB DRAM, V100 GPU

+ One Samsung SmartSSD for SSD+FPGA

Our approach only used 4 threads + 4 GB memory

Graph

Edge # (Billion)

DARPA

0.44

Vir

0.46

MAWI

0.48

Graph500

1.05

Twitter

1.46

Results: Performance Improvements

N
o
o

— 2000 -
a
Q — Competitive!
= 150 — 1500
= Q
5 -
=100 =
8 - 1000
L 4 °
> @ (o
c °0 © 500 A
5 * —A —
S 0 O g <o
Lower is better . 0
400 800 1200 400 800 1200

Number of Edges in Data Number of Edges in Data
(Million) (Million)

Results: Performance Improvements

N
o
o

—_ 2000 e
L
9 — Competitive!
= 150 — 1500
= ()
5 £
S 100 =
8 - 1000
> @
S 50 & 500
: - =
> 0 O Tiny! <

. ' 0
Lower is better 400 300 1200 200 200 1200
Number of Edges in Data Number of Edges in Data
(Million) (Million)

% Cost, Comparable performance

Results: Performance Improvements

N
o
o

— 2000 -
a
Q — Competitive!
= 150 — 1500
= V
5 -
o =
S 100 ; 1000
L @ °
> @ Q.
c °0 © 500 A
5 * —h —
S 0 O g <o
Lower is better . 0
400 800 1200 400 800 1200

Number of Edges in Data

Number of Edges in Data
(Million)

(Million)

% Cost, Comparable performance

60% - 95% Bloom filtering rate with 0.5 GB Bloom filter

Results: Performance Improvements

N
o
o

— 2000 e
2o
9 — Competitive!
= 150 — 1500
= o
5 £
o 100 —
8 - 1000
a o Q.
) 50 © 500 |
5 —A —
> 0 O Ty ©
Lower is better . 0
400 800 1200 400 800 1200
Number of Edges in Data Number of Edges in Data
(Million) (Million)

Emphasis: Considers whole-system affects (e.g., storage latency, I/0 amplification)

78 COST,COMTPATraoTe PETTOTTITATTICT

60% - 95% Bloom filtering rate with 0.5 GB Bloom filter

What to accelerate, for De Novo Assembly?

Acceleration
Goal 2: “Minimap 2” Target

For N-to-N genome alignment

Acceleration
Target

Acceleration

Target
4 N
Goal 1: Graph Construction N
and Traversal Memory
. y Bottleneck

What to accelerate, for De Novo Assembly?

Acceleration
Goal 2: “Minimap 2” Target

For N-to-N genome alignment

Acceleration

Target
Acceleration
Target l/
a \/ N
Goal 1: Graph Construction N
and Traversal Memory
\) Bottleneck

Ongoing Work 2: Alignment Accelerator

J Many De Novo tools internally use “Minimap2”

o Input: Reference, reads
o Output: mapping between them

(J De Novo does not use a reference, reads act also as reference
o Massively increased work: 10x or more!

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

o0
100+ GB memory O’“

Ongoing Work: Alignment Accelerator

Seeding

o0
100+ GB memory O’“

Chaining

» Alignment

Sequential backtracking ®

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

oo]
100+ GB memory @ Streaming, @ Sequential backtracking ®

High operational intensity

Ongoing Work: Alignment Accelerator

Seeding

(X J
100+ GB memory O’“

Chaining » Alignment

Streaming, @ Sequential backtracking ®

High operational intensity

Irregular computation patterns

Large memory requirements

Not readily parallelizable

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

oo]
100+ GB memory @ Streaming, @ Sequential backtracking ®

High operational intensity

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

(Y}]
100+ GB memory @ Streaming, @ Sequential backtracking ®

High operational intensity

, Our optimizations ! Many systems focus
Build / Load . Segment Split Prioritized | on Chaining (not ours)
Ref Index : Cutting Kernels Scheduling !
K o { _______________ \\ _______ // Dong e.g. al., mm2-gb
o Ranges (i Optimal [Backe || . [
Seeding LAY Selection Segments BBl Tl Scores tracking 4“1;?2 A?is;nrs:rft |
\ Chaining LSS = T
Bases

/ Mapping / / Mappmg
Load Query Output Output
/ Sequence / @ performed on GPU (.paf) (.sam)

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

(Y}]
100+ GB memory @ Streaming, @ Sequential backtracking ®

High operational intensity

Our optimizations ! Many systems focus
Biildl/ l.oad { Segment Split Prioritized | on Chaining (not ours)
Ref Index : Cutting Kernels Scheduling !

k o { _______________ \\ _______ // Dong e.g. al., mm2-gb

Ranges Optimal . | eeassececemsce
Seedin AAnichun ngrclﬁzn - Gei:r);teion Sfores t:zjlccli(n Primary ; Base Level
: " o e €) Chains ! Alignment .
* Chaining st s s il
Bases

/ Mapping / / Mapplng
Load Query Output Output
/ Sequence / @ performed on GPU (.paf) (.sam)

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

(Y}]
100+ GB memory @ Streaming, @ Sequential backtracking ®

High operational intensity

______________ Our optimizations Many systems focus
Build / Load | Segment Split Prioritized | on Chaining (not ours)
Ref Index : Cutting Kernels Scheduling E
\ SRR, { _______________ \\ _______ // _________ \ Dong e.g. al., mm2-gb

Range Ranges Score Optimal\ W—X: ----------------- :
Seeding Culli Selection Yol Generation Scoreg \ Primary ; Base Level f

] Chaining A100 GPU
Bases As good as 32 Xeon threads...
Load
/ g:qugsfgy / @ performed on GPU

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

(Y}]
100+ GB memory @ Streaming, @ Sequential backtracking ®

High operational intensity

______________ Our optimizations Many systems focus
Build / Load | Segment Split Prioritized | on Chaining (not ours)
Ref Index : Cutting Kernels Scheduling E
\ SRR, { _______________ \\ _______ // _________ \ Dong e.g. al., mm2-gb

Range Ranges Score Optimal\ W—X: ----------------- :
Seeding Culli Selection Yol Generation Scoreg \ Primary ; Base Level f

‘ Chaining A100 GPU
B As good as 32 Xeon threads...
Load Query (FPGA much better!)
/ Sequence / @ performed on GPU

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment

(Y}]
100+ GB memory @ Streaming, @ Sequential backtracking ®

High operational intensity

______________ Our optimizations | Many systems focus
Build/load | Segment Split Prioritized ! on Chaining (not ours)
Ref Index i Cutting Kernels ~ Scheduling |
\ SRR, { _______________ \\ _______ // _________ \ Dong e.g. al., mm2-gb

Range Ranges ‘ Score Optimal\ W—Lr ----------------- :
Seedlng AnChor Qalantinn “ (ronaratinn SCOI‘P \ Prlmar : Base Level ;

] Chaining may be 70% of work, (ONT)
Basg or 10% of work (PacBio)

A100 GPU
As good as 32 Xeon threads...
(FPGA much better!)

/ Load Query

Sequence

@ performed on GPU

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

» Alignment

~50% of computation

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

 Random-access during hash construction
 Randome-access during hash lookup

» Alignment

~50% of computation

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

 Random-access during hash construction
 Randome-access during hash lookup

»
»

Requests
Responses

IRIR

»
»

Reads from the same SSD page

» Alignment

~50% of computation

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

 Random-access during hash construction
 Randome-access during hash lookup

»
»

Requests
Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

» Alignment

~50% of computation

Ongoing Work: Alignment Accelerator

Seeding

Chaining

» Alignment

Vast majority of memory

 Random-access during hash construction
 Randome-access during hash lookup

»
»

Requests
Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Ongoing Work: Alignment Accelerator

Seeding Chaining » Alignment
Vast majority of memory ~50% of computation
 Random-access during hash construction * Backtracking needs fast clock (CPU?)
 Randome-access during hash lookup e Score matrix is too large... (PCle bottleneck!)
Requests : Read: ACGT... R
Responses 0
@)
<
R R S
” c
o
Reads from the same SSD page QD
O]
m A 4

e.g., Kang et. al., “BunchBloomer”, FPL 2022

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

 Random-access during hash construction
 Randome-access during hash lookup

»
»

Requests
Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

>

Alignment

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Read: ACGT...

Reference: ACGT...

A 4

Score matrix computation: Parallel

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

 Random-access during hash construction
 Randome-access during hash lookup

»
»

Requests
Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

>

Alignment

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Read: ACGT...

Reference: ACGT...

A 4

Score matrix computation: Parallel
Score matrix: Large

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

 Random-access during hash construction
 Randome-access during hash lookup

»
»

Requests
Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

>

Alignment

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Read: ACGT...

Reference: ACGT...

A 4

Score matrix computation: Parallel
Score matrix: Large
Backtracking: Sequential

Ongoing Work: Alignment Accelerator

Seeding

Vast majority of memory

Chaining

 Random-access during hash construction
 Randome-access during hash lookup

Requests

Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

>

Alignment

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Read: ACGT...

Reference: ACGT...

A 4

e Score matrix computation: Parallel
* Score matrix: Large
* Backtracking: Sequential

* Solution 1: Compress the matrix

Ongoing Work: Alignment Accelerator

Seeding

Vast majority of memory

Chaining

 Random-access during hash construction
 Randome-access during hash lookup

Requests

Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

>

Alignment

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Read: ACGT...

Reference: ACGT...

A 4

e Score matrix computation: Parallel
* Score matrix: Large
* Backtracking: Sequential

* Solution 1: Compress the matrix

Ongoing Work: Alignment Accelerator

Seeding

Vast majority of memory

Chaining

 Random-access during hash construction
 Randome-access during hash lookup

Requests

Responses

IRIR

»
»

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

>

Alignment

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Read: ACGT...

Reference: ACGT...

A 4

e Score matrix computation: Parallel
* Score matrix: Large
* Backtracking: Sequential

e Solution 1: Compress the matrix
* Solution 2: Parallel backtracking

Ongoing Work: Alignment Accelerator

Seeding

Chaining

» Alignment

Vast majority of memory

 Random-access during hash construction

 Randome-access during hash lookup

~50% of computation

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

Read: ACGT...

»

Goal: Drop-in replacement of Minimap?2
1/10 memory, 10x performance

——1

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

Referer

e Solution 1: Compress the matrix
* Solution 2: Parallel backtracking

Ongoing Work: Alignment Accelerator

Seeding

Chaining

Vast majority of memory

 Random-access during hash construction

 Randome-access during hash lookup

» Alignment

~50% of computation

Read: ACGT...

Backtracking needs fast clock (CPU?)
Score matrix is too large... (PCle bottleneck!)

»

Goal: Drop-in replacement of Minimap?2

1/10 memory, 10x performance

... Stay tuned!

——1

Reads from the same SSD page

e.g., Kang et. al., “BunchBloomer”, FPL 2022

Referer

e Solution 1: Compress the matrix
* Solution 2: Parallel backtracking

Long-Term Goal:
Precision ("Personalized”) Medicine

Future Focus!

Analysis!
(Biomarkers, regulators,
antigens,...)

Cancer Patient Sequenced
Genome

Our Efforts So Far...

ISCA 2018

Frontiers 2021

FPL 2022

PACT 2023

DAC 2024

NVM + FPGA

NVM

DRAM + FPGA

NVM + FPGA

NVM + FPGA

vertex-centric graph analytics
Genomic graphs (SMuFin)
Genomic graphs (De Bruijn)
Graph Neural Networks

Software-Driven graph analytics

Our Efforts So Far...

ISCA 2018 NVM + FPGA vertex-centric graph analytics
Frontiers 2021 NVM Genomic graphs (SMuFin)

FPL 2022 DRAM + FPGA Genomic graphs (De Bruijn)
PACT 2023 NVM + FPGA Graph Neural Networks

DAC 2024 NVM + FPGA Software-Driven graph analytics

Genome Compression Graph Compression Parallel Backtracking

ARDA is Interested in a LOT of things!

ARDA is Interested in a LOT of things!

J Graph Neural Networks

J Edge processing — Earthquakes and Wildfires
J Edge processing — Smart Agriculture

J Processing-In-Memory

J Accelerating Program Analysis

J Scientific Computing — Symbolic Regression

d Oh my!

Students Involved

a PhD Se-Min Lim @ UCI
. Scalable Graph Neural Networks with near-storage acceleration

2 PhD Seongyoung Kang @ UCI
. Scalable Subgraph Isomorphism with near-storage acceleration

. Triangle counting demo being developed
« Plan to present to Samsung collaborators (Xuebin Yao, Reza Soltaniyeh)

W& 0 PhD Esmerald Aliaj @ UCI
e . Compiler support for hardware kernel generation

	Slide 1: System architectures with adaptive accelerators for genomics
	Slide 2: System architectures with adaptive accelerators for genomics
	Slide 3: Working to Bridge the Silos…
	Slide 4: The Usual Doom and Gloom
	Slide 5: The Usual Doom and Gloom
	Slide 6: The Usual Doom and Gloom
	Slide 7: The Usual Doom and Gloom
	Slide 8: But, We Need More Performance!
	Slide 9: Specialization for Performance & Efficiency
	Slide 10: Specialization for Performance & Efficiency
	Slide 11: Specialization for Performance & Efficiency
	Slide 12: But, We Need More Performance!
	Slide 13: But, We Need More Performance!
	Slide 14: But, We Need More Performance!
	Slide 15: But, We Need More Performance!
	Slide 16: GPU Scalability Trend
	Slide 17: GPU Scalability Trend
	Slide 18: GPU Scalability Trend
	Slide 19: GPU Scalability Trend
	Slide 20: GPU Scalability Trend
	Slide 21: GPU Scalability Trend
	Slide 22: GPU Scalability Trend
	Slide 23: An Example: Graph Neural Networks!
	Slide 24: An Example: Graph Neural Networks!
	Slide 25: An Example: Graph Neural Networks!
	Slide 26: An Example: Graph Neural Networks!
	Slide 27: GPU for GCN in practice
	Slide 28: GPU for GCN in practice
	Slide 29: GPU for GCN in practice
	Slide 30: GPU for GCN in practice
	Slide 31: GPU for GCN in practice
	Slide 32: GPU for GCN in practice
	Slide 33: GPU for GCN in practice
	Slide 34: GPU for GCN in practice
	Slide 35: An Example: Graph Neural Networks!
	Slide 36: An Example: Graph Neural Networks!
	Slide 37: An Example: Graph Neural Networks!
	Slide 38: An Example: Graph Neural Networks!
	Slide 39: An Example: Graph Neural Networks!
	Slide 40: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 41: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 42: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 43: Quick Plug -- A Whole-System Solution: Barad-dur [An et. al., PACT 2023]
	Slide 44: But, We Need More Performance!
	Slide 45: But, We Need More Performance!
	Slide 46: But, We Need More Performance!
	Slide 47: Another Application Target: Precision (“Personalized”) Medicine
	Slide 48: Another Application Target: Precision (“Personalized”) Medicine
	Slide 49: Another Application Target: Precision (“Personalized”) Medicine
	Slide 50: Another Application Target: Precision (“Personalized”) Medicine
	Slide 51: Another Application Target: Precision (“Personalized”) Medicine
	Slide 52: Genome Assembly Methods
	Slide 53: Genome Assembly Methods
	Slide 54: Genome Assembly Methods
	Slide 55: Genome Assembly Methods
	Slide 56: Genome Assembly Methods
	Slide 57: Genome Assembly Methods
	Slide 58: De Novo Assembly for Personalized Medicine
	Slide 59: De Novo Assembly for Personalized Medicine
	Slide 60: De Novo Assembly for Personalized Medicine
	Slide 61: What to accelerate, for De Novo Assembly?
	Slide 62: What to accelerate, for De Novo Assembly?
	Slide 63: What to accelerate, for De Novo Assembly?
	Slide 64: What to accelerate, for De Novo Assembly?
	Slide 65: What to accelerate, for De Novo Assembly?
	Slide 66: What to accelerate, for De Novo Assembly?
	Slide 67: Graph Analytics in De Novo Assembly
	Slide 68: Graph Analytics in De Novo Assembly
	Slide 69: Graph Analytics in De Novo Assembly
	Slide 70: Graph Analytics in De Novo Assembly
	Slide 71: Graph Analytics in De Novo Assembly
	Slide 72: High-Performance Graph Analytics in SSDs
	Slide 73: High-Performance Graph Analytics in SSDs
	Slide 74: High-Performance Graph Analytics in SSDs
	Slide 75: High-Performance Graph Analytics in SSDs
	Slide 76: High-Performance Graph Analytics in SSDs
	Slide 77: Our Solution: Sorting Accesses
	Slide 78: Our Solution: Sorting Accesses
	Slide 79: Our Solution: Sorting Accesses
	Slide 80: Our Solution: Sorting Accesses
	Slide 81: Our Solution: Sorting Accesses
	Slide 82: Our Solution: Sorting Accesses
	Slide 83: Our Solution: Sorting Accesses
	Slide 84: FPGA Radix Sorter
	Slide 85: FPGA Radix Sorter
	Slide 86: FPGA Radix Sorter
	Slide 87: FPGA Radix Sorter
	Slide 88: Common Abstraction for Graph Access
	Slide 89: Common Abstraction for Graph Access
	Slide 90: Common Abstraction for Graph Access
	Slide 91: Common Abstraction for Graph Access
	Slide 92: Common Abstraction for Graph Access
	Slide 93: Common Abstraction for Graph Access
	Slide 94: Common Abstraction for Graph Access
	Slide 95: Common Abstraction for Graph Access
	Slide 96: Common Abstraction for Graph Access
	Slide 97: Common Abstraction for Graph Access
	Slide 98: A Library of Optimizations to Hide
	Slide 99: A Library of Optimizations to Hide
	Slide 100: A Library of Optimizations to Hide
	Slide 101: Preliminary Evaluation: Triangle Counting
	Slide 102: Experimental Setup
	Slide 103: Experimental Setup
	Slide 104: Results: Performance Improvements
	Slide 105: Results: Performance Improvements
	Slide 106: Results: Performance Improvements
	Slide 107: Results: Performance Improvements
	Slide 108: What to accelerate, for De Novo Assembly?
	Slide 109: What to accelerate, for De Novo Assembly?
	Slide 110: Ongoing Work 2: Alignment Accelerator
	Slide 111: Ongoing Work: Alignment Accelerator
	Slide 112: Ongoing Work: Alignment Accelerator
	Slide 113: Ongoing Work: Alignment Accelerator
	Slide 114: Ongoing Work: Alignment Accelerator
	Slide 115: Ongoing Work: Alignment Accelerator
	Slide 116: Ongoing Work: Alignment Accelerator
	Slide 117: Ongoing Work: Alignment Accelerator
	Slide 118: Ongoing Work: Alignment Accelerator
	Slide 119: Ongoing Work: Alignment Accelerator
	Slide 120: Ongoing Work: Alignment Accelerator
	Slide 121: Ongoing Work: Alignment Accelerator
	Slide 122: Ongoing Work: Alignment Accelerator
	Slide 123: Ongoing Work: Alignment Accelerator
	Slide 124: Ongoing Work: Alignment Accelerator
	Slide 125: Ongoing Work: Alignment Accelerator
	Slide 126: Ongoing Work: Alignment Accelerator
	Slide 127: Ongoing Work: Alignment Accelerator
	Slide 128: Ongoing Work: Alignment Accelerator
	Slide 129: Ongoing Work: Alignment Accelerator
	Slide 130: Ongoing Work: Alignment Accelerator
	Slide 131: Ongoing Work: Alignment Accelerator
	Slide 132: Ongoing Work: Alignment Accelerator
	Slide 133: Ongoing Work: Alignment Accelerator
	Slide 134: Ongoing Work: Alignment Accelerator
	Slide 135: Ongoing Work: Alignment Accelerator
	Slide 136: Long-Term Goal: Precision (“Personalized”) Medicine
	Slide 137: Our Efforts So Far…
	Slide 138: Our Efforts So Far…
	Slide 139: ARDA is Interested in a LOT of things!
	Slide 140: ARDA is Interested in a LOT of things!
	Slide 141: Students Involved

